A Conducting Cylinder for Modeling Human Body Presence in Indoor Propagation Channel

We demonstrate that in indoor radio propagation modeling, the presence of the human body may be approximated by a conducting circular cylinder at microwave frequencies. Therefore, a perfect tool such as the uniform theory of diffraction may be used to predict the diffracted field over a smooth circu...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on antennas and propagation Vol. 55; no. 11; pp. 3099 - 3103
Main Authors Ghaddar, M., Talbi, L., Denidni, T.A., Sebak, A.
Format Journal Article
LanguageEnglish
Published New York, NY IEEE 01.11.2007
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:We demonstrate that in indoor radio propagation modeling, the presence of the human body may be approximated by a conducting circular cylinder at microwave frequencies. Therefore, a perfect tool such as the uniform theory of diffraction may be used to predict the diffracted field over a smooth circular surface. To validate the model, vertically and horizontally polarized continuous wave (CW) measurements were performed at 10.5 GHz between two fixed terminals inside a room along with the presence of an obstacle (person or metallic cylinder) moving along predetermined parallel and perpendicularly crossing paths with respect to the line-of-sight direction. Results indicate that there is a strong correlation between the effects of the human body and those of a conducting circular cylinder. The simulation results successfully agree with the CW experimental measurements.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0018-926X
1558-2221
DOI:10.1109/TAP.2007.908563