Local Autoencoding for Parameter Estimation in a Hidden Potts-Markov Random Field

A local-autoencoding (LAE) method is proposed for the parameter estimation in a Hidden Potts-Markov random field model. Due to sampling cost, Markov chain Monte Carlo methods are rarely used in real-time applications. Like other heuristic methods, LAE is based on a conditional independence assumptio...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on image processing Vol. 25; no. 5; pp. 2324 - 2336
Main Authors Sanming Song, Bailu Si, Herrmann, J. Michael, Xisheng Feng
Format Journal Article
LanguageEnglish
Published United States IEEE 01.05.2016
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:A local-autoencoding (LAE) method is proposed for the parameter estimation in a Hidden Potts-Markov random field model. Due to sampling cost, Markov chain Monte Carlo methods are rarely used in real-time applications. Like other heuristic methods, LAE is based on a conditional independence assumption. It adapts, however, the parameters in a block-by-block style with a simple Hebbian learning rule. Experiments with given label fields show that the LAE is able to converge in far less time than required for a scan. It is also possible to derive an estimate for LAE based on a Cramer-Rao bound that is similar to the classical maximum pseudolikelihood method. As a general algorithm, LAE can be used to estimate the parameters in anisotropic label fields. Furthermore, LAE is not limited to the classical Potts model and can be applied to other types of Potts models by simple label field transformations and straightforward learning rule extensions. Experimental results on image segmentations demonstrate the efficiency and generality of the LAE algorithm.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1057-7149
1941-0042
DOI:10.1109/TIP.2016.2545299