Output Feedback Stabilization of Linear Systems With Actuator Saturation

The note presents a method for designing an output feedback law that stabilizes a linear system subject to actuator saturation with a large domain of attraction. This method applies to general linear systems including strictly unstable ones. A nonlinear output feedback controller is first expressed...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on automatic control Vol. 52; no. 1; pp. 122 - 128
Main Authors Wu, Fen, Lin, Zongli, Zheng, Qian
Format Journal Article
LanguageEnglish
Published New York, NY IEEE 01.01.2007
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The note presents a method for designing an output feedback law that stabilizes a linear system subject to actuator saturation with a large domain of attraction. This method applies to general linear systems including strictly unstable ones. A nonlinear output feedback controller is first expressed in the form of a quasi-LPV system. Conditions under which the closed-loop system is locally asymptotically stable are then established in terms of the coefficient matrices of the controller. The design of the controller (coefficient matrices) that maximizes an estimate of the domain of attraction is then formulated and solved as an optimization problem with LMI constraints
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0018-9286
1558-2523
DOI:10.1109/TAC.2006.886498