Identifying Codes and Covering Problems

The identifying code problem for a given graph involves finding a minimum set of vertices whose neighborhoods uniquely overlap at any given graph vertex. Initially introduced in 1998, this problem has demonstrated its fundamental nature through a wide variety of applications, such as fault diagnosis...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on information theory Vol. 54; no. 9; pp. 3929 - 3950
Main Authors Laifenfeld, M., Trachtenberg, A.
Format Journal Article
LanguageEnglish
Published New York, NY IEEE 01.09.2008
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The identifying code problem for a given graph involves finding a minimum set of vertices whose neighborhoods uniquely overlap at any given graph vertex. Initially introduced in 1998, this problem has demonstrated its fundamental nature through a wide variety of applications, such as fault diagnosis, location detection, and environmental monitoring, in addition to deep connections to information theory, superimposed and covering codes, and tilings. This work establishes efficient reductions between the identifying code problem and the well-known set-covering problem, resulting in a tight hardness of approximation result and novel, provably tight polynomial-time approximations. The main results are also extended to r -robust identifying codes and analogous set (2 r +1) -multicover problems. Finally, empirical support is provided for the effectiveness of the proposed approximations, including good constructions for well-known topologies such as infinite two-dimensional grids.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0018-9448
1557-9654
DOI:10.1109/TIT.2008.928263