Extremozymes and compatible solute production potential of halophilic and halotolerant bacteria isolated from crop rhizospheric soils of Southwest Saurashtra Gujarat
Halophiles are one of the classes of extremophilic microorganisms that can flourish in environments with very high salt concentrations. In this study, fifteen bacterial strains isolated from various crop rhizospheric soils of agricultural fields along the Southwest coastline of Saurashtra, Gujarat,...
Saved in:
Published in | Scientific reports Vol. 14; no. 1; pp. 15704 - 18 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
08.07.2024
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Halophiles are one of the classes of extremophilic microorganisms that can flourish in environments with very high salt concentrations. In this study, fifteen bacterial strains isolated from various crop rhizospheric soils of agricultural fields along the Southwest coastline of Saurashtra, Gujarat, and identified by 16S rRNA gene sequencing as
Halomonas pacifica
,
H. stenophila
,
H. salifodinae, H. binhaiensis, Oceanobacillus oncorhynchi,
and
Bacillus paralicheniformis
were investigated for their potentiality to produce extremozymes and compatible solute. The isolates showed the production of halophilic protease, cellulase, and chitinase enzymes ranging from 6.90 to 35.38, 0.004–0.042, and 0.097–0.550 U ml
−1
, respectively. The production of ectoine-compatible solute ranged from 0.01 to 3.17 mg l
−1
. Furthermore, the investigation of the ectoine-compatible solute production at the molecular level by PCR showed the presence of the ectoine synthase gene responsible for its biosynthesis in the isolates. Besides, it also showed the presence of glycine betaine biosynthetic gene betaine aldehyde dehydrogenase in the isolates. The compatible solute production by these isolates may be linked to their ability to produce extremozymes under saline conditions, which could protect them from salt-induced denaturation, potentially enhancing their stability and activity. This correlation warrants further investigation. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 2045-2322 2045-2322 |
DOI: | 10.1038/s41598-024-63581-z |