A perspective on exogenous redox regulation mediated by transfused RBCs subject to the storage lesion
Granted with a potent ability to interact with and tolerate oxidative stressors, RBCs scavenge most reactive oxygen and nitrogen species (RONS) generated in circulation. This essential non-canonical function, however, renders RBCs susceptible to damage when vascular RONS are generated in excess, mak...
Saved in:
Published in | Transfusion and apheresis science Vol. 63; no. 3; p. 103929 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier Ltd
01.06.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Granted with a potent ability to interact with and tolerate oxidative stressors, RBCs scavenge most reactive oxygen and nitrogen species (RONS) generated in circulation. This essential non-canonical function, however, renders RBCs susceptible to damage when vascular RONS are generated in excess, making vascular redox imbalance a common etiology of anemia, and thus a common indication for transfusion. This accentuates the relevance of impairments in redox metabolism during hypothermic storage, as the exposure to chronic oxidative stressors upon transfusion could be exceedingly deleterious to stored RBCs. Herein, we review the prominent mechanisms of the hypothermic storage lesion that alter the ability of RBCs to scavenge exogenous RONS as well as the associated clinical relevance. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
ISSN: | 1473-0502 1878-1683 |
DOI: | 10.1016/j.transci.2024.103929 |