Feedback Control of an Achiral Robotic Microswimmer

Magnetic microswimmers are useful for navigating and performing tasks at small scales. To demonstrate effective control over such microswimmers, we implemented feedback control of the three-bead achiral microswimmers in both simulation and experiment. The achiral microswimmers with the ability to sw...

Full description

Saved in:
Bibliographic Details
Published inJournal of bionics engineering Vol. 14; no. 2; pp. 245 - 259
Main Authors Kei Cheang, U, Kim, Hoyeon, Milutinović, Dejan, Choi, Jongeun, Kim, Min Jun
Format Journal Article
LanguageEnglish
Published Singapore Elsevier Ltd 01.06.2017
Springer Singapore
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Magnetic microswimmers are useful for navigating and performing tasks at small scales. To demonstrate effective control over such microswimmers, we implemented feedback control of the three-bead achiral microswimmers in both simulation and experiment. The achiral microswimmers with the ability to swim in bulk fluid are controlled wirelessly using magnetic fields generated from electromagnetic coils. The achirality of the microswimmers introduces unknown handedness resulting in uncertainty in swimming direction. We use a combination of rotating and static magnetic fields generated from an approximate Helmholtz coil system to overcome such uncertainty. There are also movement uncertainties due to environmental factors such as unsteady flow conditions. A kinematic model based feedback controller was created based on data fitting of experimental data. However, the controller was unable to yield satisfactory performance due to uncertainties from environmental factors; i.e., the time to reach target pose under adverse flow condition is too long. Following the implementation of an integral controller to control the microswimmers' swimming velocity, the mieroswimmers were able to reach the target in roughly half the time. Through simulation and experiments, we show that the feedback control law can move an achiral microswimmer from any initial conditions to a target pose.
AbstractList Magnetic microswimmers are useful for navigating and performing tasks at small scales. To demonstrate effective control over such microswimmers, we implemented feedback control of the three-bead achiral microswimmers in both simulation and experiment. The achiral microswimmers with the ability to swim in bulk fluid are controlled wirelessly using magnetic fields generated from electromagnetic coils. The achirality of the microswimmers introduces unknown handedness resulting in uncertainty in swimming direction. We use a combination of rotating and static magnetic fields generated from an approximate Helmholtz coil system to overcome such uncertainty. There are also movement uncertainties due to environmental factors such as unsteady flow conditions. A kinematic model based feedback controller was created based on data fitting of experimental data. However, the controller was unable to yield satisfactory performance due to uncertainties from environmental factors; i.e., the time to reach target pose under adverse flow condition is too long. Following the implementation of an integral controller to control the microswimmers’ swimming velocity, the microswimmers were able to reach the target in roughly half the time. Through simulation and experiments, we show that the feedback control law can move an achiral microswimmer from any initial conditions to a target pose.
Magnetic microswimmers are useful for navigating and performing tasks at small scales. To demonstrate effective control over such microswimmers, we implemented feedback control of the three-bead achiral microswimmers in both simulation and experiment. The achiral microswimmers with the ability to swim in bulk fluid are controlled wirelessly using magnetic fields generated from electromagnetic coils. The achirality of the microswimmers introduces unknown handedness resulting in un-certainty in swimming direction. We use a combination of rotating and static magnetic fields generated from an approximate Helmholtz coil system to overcome such uncertainty. There are also movement uncertainties due to environmental factors such as unsteady flow conditions. A kinematic model based feedback controller was created based on data fitting of experimental data. However, the controller was unable to yield satisfactory performance due to uncertainties from environmental factors; i.e., the time to reach target pose under adverse flow condition is too long. Following the implementation of an integral controller to control the microswimmers’ swimming velocity, the microswimmers were able to reach the target in roughly half the time. Through simulation and experiments, we show that the feedback control law can move an achiral microswimmer from any initial conditions to a target pose.
Magnetic microswimmers are useful for navigating and performing tasks at small scales. To demonstrate effective control over such microswimmers, we implemented feedback control of the three-bead achiral microswimmers in both simulation and experiment. The achiral microswimmers with the ability to swim in bulk fluid are controlled wirelessly using magnetic fields generated from electromagnetic coils. The achirality of the microswimmers introduces unknown handedness resulting in uncertainty in swimming direction. We use a combination of rotating and static magnetic fields generated from an approximate Helmholtz coil system to overcome such uncertainty. There are also movement uncertainties due to environmental factors such as unsteady flow conditions. A kinematic model based feedback controller was created based on data fitting of experimental data. However, the controller was unable to yield satisfactory performance due to uncertainties from environmental factors; i.e., the time to reach target pose under adverse flow condition is too long. Following the implementation of an integral controller to control the microswimmers' swimming velocity, the mieroswimmers were able to reach the target in roughly half the time. Through simulation and experiments, we show that the feedback control law can move an achiral microswimmer from any initial conditions to a target pose.
Author U Kei Cheang Hoyeon Kim Dejan Milutinovic Jongeun Choi Min Jun Kim
AuthorAffiliation Department of Mechanical Engineering and Mechanics, Drexel University, Philadelphia, PA 19104, USA Department of Mechanical Engineering, Southern Methodist University, Dallas, TX75275, USA Department of Computer Engineering, University of California, Santa Cruz, Santa Cruz, California 95064, USA School of Mechanical Engineering, Yonsei University, Seoul, South Korea
Author_xml – sequence: 1
  givenname: U
  surname: Kei Cheang
  fullname: Kei Cheang, U
  organization: Department of Mechanical Engineering and Mechanics, Drexel University, Philadelphia, PA 19104, USA
– sequence: 2
  givenname: Hoyeon
  surname: Kim
  fullname: Kim, Hoyeon
  organization: Department of Mechanical Engineering, Southern Methodist University, Dallas, TX 75275, USA
– sequence: 3
  givenname: Dejan
  surname: Milutinović
  fullname: Milutinović, Dejan
  organization: Department of Computer Engineering, University of California, Santa Cruz, Santa Cruz, California 95064, USA
– sequence: 4
  givenname: Jongeun
  surname: Choi
  fullname: Choi, Jongeun
  organization: School of Mechanical Engineering, Yonsei University, Seoul, South Korea
– sequence: 5
  givenname: Min Jun
  surname: Kim
  fullname: Kim, Min Jun
  email: mkim@coe.drexel.edu
  organization: Department of Mechanical Engineering, Southern Methodist University, Dallas, TX 75275, USA
BookMark eNqFkM1LwzAchoNMcJv-CULxpIdqkuajwYOM4lSYCH6cQ5qmW2aXaFoV_3vTbezgZeQQAr_nfX9PRmDgvDMAnCJ4iSBiVy-IcZwyisU5YhcMZoKm9AAMMSVZihFBAzDcjRyBUdsuIaQC59kQZFNjqlLp96Twrgu-SXydKJdM9MIG1STPvvSd1cmj1cG3P3a1MuEYHNaqac3J9h6Dt-nta3Gfzp7uHorJLNUE4y6tYE5KLLhGIq-hwoyyXBvCuRGwhJBnpua04qxE8UAlKk0qrTlRCouSIp2NAd3k9tVtMLX8CHalwq9EUPbmcm0uey0ZX2tzSSN3_Y_TtlOd7QWVbfbSbEO3sc3NTZBL_xVcFN0L3mxAE__k20aw1dY4bSobjO5k5e3ehLPt4gvv5p-xfWfMOBKMcIGzP4rjj_0
CitedBy_id crossref_primary_10_1038_s41598_022_21725_z
crossref_primary_10_1016_j_nancom_2018_03_002
crossref_primary_10_1103_PhysRevE_108_054401
crossref_primary_10_3390_mi13071005
crossref_primary_10_3390_mi13111965
crossref_primary_10_1038_s41598_021_00153_5
crossref_primary_10_1063_5_0048277
crossref_primary_10_1002_smll_202400346
crossref_primary_10_1016_j_isci_2022_104507
crossref_primary_10_1109_TEVC_2022_3198086
crossref_primary_10_1109_TASE_2024_3394238
crossref_primary_10_1016_j_compbiomed_2022_105887
crossref_primary_10_1007_s12213_018_0107_0
crossref_primary_10_1016_j_jconrel_2019_03_031
crossref_primary_10_1109_TNB_2021_3062006
crossref_primary_10_1109_TRO_2021_3085245
crossref_primary_10_3390_mi14061209
crossref_primary_10_3390_mi13050798
crossref_primary_10_1002_smll_201704374
crossref_primary_10_1109_TCST_2021_3139192
crossref_primary_10_1109_TNB_2019_2960068
crossref_primary_10_1063_1_5090297
crossref_primary_10_1109_TNB_2019_2956470
crossref_primary_10_1109_TNB_2020_3042266
crossref_primary_10_1109_JIOT_2021_3111089
crossref_primary_10_1038_s41598_021_87010_7
crossref_primary_10_1109_TCYB_2020_3025859
crossref_primary_10_1109_TNB_2019_2919132
crossref_primary_10_1007_s12213_020_00137_0
crossref_primary_10_1021_acs_iecr_1c01409
crossref_primary_10_1109_TNANO_2019_2960126
crossref_primary_10_1039_D3NR02846A
crossref_primary_10_1109_TCYB_2021_3052731
crossref_primary_10_3389_frobt_2022_1063987
crossref_primary_10_1002_aisy_202100165
Cites_doi 10.1002/adma.201103818
10.1177/0278364909341658
10.1002/ddr.20067
10.1039/c1sm05960b
10.1109/TBME.2005.862570
10.1021/jz402186w
10.1021/nl900186w
10.1002/jemt.20118
10.1021/nn1000468
10.1177/0278364909340212
10.1007/s11051-014-2737-z
10.1039/B812393D
10.1016/j.yexmp.2008.12.004
10.1016/j.addr.2008.03.018
10.1088/1367-2630/7/1/234
10.1002/adma.201370257
10.1109/TMECH.2004.834646
10.1016/j.jconrel.2011.06.001
10.1002/smll.201201864
10.1002/adhm.201200409
10.1002/smll.201101909
10.1002/mabi.200400202
10.1119/1.10903
10.1109/100.388294
10.1007/s11051-014-2856-6
10.1021/nl404044d
10.1118/1.596520
10.1063/1.2713229
10.1038/nature04090
10.1021/nl052340u
10.1016/j.peptides.2009.10.002
10.1016/S0262-8856(98)00160-7
10.1063/1.3327522
10.1103/PhysRevE.90.033007
10.1063/1.3497275
10.1103/PhysRevE.69.062901
10.1063/1.3079655
10.1063/1.3518982
10.1103/PhysRevLett.100.218102
10.1103/PhysRevLett.99.178103
10.1088/0960-1317/21/3/035001
10.1063/1.4893695
ContentType Journal Article
Copyright 2017 Jilin University
Jilin University 2017
Copyright_xml – notice: 2017 Jilin University
– notice: Jilin University 2017
DBID 2RA
92L
CQIGP
W94
WU4
~WA
AAYXX
CITATION
DOI 10.1016/S1672-6529(16)60395-5
DatabaseName 维普期刊资源整合服务平台
中文科技期刊数据库-CALIS站点
中文科技期刊数据库-7.0平台
中文科技期刊数据库-自然科学
中文科技期刊数据库-自然科学-生物科学
中文科技期刊数据库- 镜像站点
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList


DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Biology
Engineering
DocumentTitleAlternate Feedback Control of an Achiral Robotic Microswimmer
EISSN 2543-2141
EndPage 259
ExternalDocumentID 10_1016_S1672_6529_16_60395_5
S1672652917300069
671964792
GroupedDBID --K
--M
-EM
.~1
0R~
1B1
1~.
1~5
2B.
2C.
2RA
4.4
406
457
4G.
5GY
5VR
5VS
7-5
71M
8P~
8UJ
92E
92I
92L
92Q
93N
AACTN
AAEDT
AAEDW
AAFGU
AAHNG
AAIAL
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATNV
AAUYE
AAXUO
AAYFA
ABDZT
ABECU
ABFGW
ABFTV
ABJNI
ABKAS
ABKCH
ABMAC
ABMQK
ABTEG
ABTKH
ABTMW
ABXDB
ABYKQ
ACAOD
ACBMV
ACBRV
ACBYP
ACDAQ
ACGFS
ACHSB
ACIGE
ACIPQ
ACNNM
ACOKC
ACRLP
ACTTH
ACVWB
ACWMK
ACZOJ
ADBBV
ADEZE
ADKNI
ADMDM
ADMUD
ADOXG
ADRFC
ADTZH
ADURQ
ADYFF
AEBSH
AECPX
AEFTE
AEKER
AENEX
AESKC
AESTI
AEVTX
AFKWA
AFNRJ
AFQWF
AFUIB
AGDGC
AGGBP
AGHFR
AGJBK
AGMZJ
AGUBO
AGYEJ
AHJVU
AIAKS
AIEXJ
AIKHN
AILAN
AIMYW
AITGF
AITUG
AJBFU
AJDOV
AJOXV
AJZVZ
AKQUC
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMKLP
AMRAJ
AMXSW
AMYLF
AXJTR
AXYYD
BGNMA
BJAXD
BKOJK
BLXMC
CCEZO
CEKLB
CHBEP
CQIGP
CS3
CW9
DPUIP
DU5
EBLON
EBS
EFJIC
EFLBG
EJD
EO9
EP2
EP3
FA0
FDB
FINBP
FIRID
FNLPD
FNPLU
FSGXE
FYGXN
GBLVA
GGCAI
GJIRD
HZ~
IAO
IKXTQ
IWAJR
J-C
J1W
JJJVA
JZLTJ
KOM
KOV
LLZTM
M41
M4Y
MO0
N9A
NPVJJ
NQJWS
NU0
O-L
O9-
O9J
OAUVE
OZT
P-8
P-9
P2P
PC.
PT4
Q38
RIG
RLLFE
ROL
RSV
SDC
SDF
SDG
SES
SNE
SNPRN
SOHCF
SOJ
SPC
SRMVM
SSLCW
SST
SSZ
STPWE
T5K
TCJ
TGP
UOJIU
UTJUX
VEKWB
VFIZW
W94
WFFXF
WU4
Z7X
ZMTXR
~WA
AGQEE
FIGPU
-SC
-S~
AACDK
AAJBT
AASML
AAXDM
AAXKI
ABAKF
ABWVN
ACDTI
ACPIV
ACRPL
ADNMO
AEFQL
AEIPS
AEMSY
AFBBN
AGRTI
AIGIU
AKRWK
ANKPU
CAJEC
HG6
IHR
ITC
Q--
SJYHP
U1G
U5M
AATTM
AAYWO
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ACVFH
ADCNI
AEUPX
AEZWR
AFDZB
AFHIU
AFOHR
AFPUW
AFXIZ
AGCQF
AGRNS
AHPBZ
AHWEU
AIGII
AIIUN
AIXLP
AKBMS
AKYEP
ATHPR
AYFIA
CITATION
SSH
ID FETCH-LOGICAL-c422t-d084b297c198f0a26568ce477e90b0073ef75d76b1b1b0a9dc4dcc74aa29b51c3
IEDL.DBID .~1
ISSN 1672-6529
IngestDate Thu Apr 24 23:02:41 EDT 2025
Tue Jul 01 00:55:05 EDT 2025
Fri Feb 21 02:31:06 EST 2025
Fri Feb 23 02:28:43 EST 2024
Wed Feb 14 10:02:12 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords magnetic control
low Reynold number
chirality
microrobotics
feedback control
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c422t-d084b297c198f0a26568ce477e90b0073ef75d76b1b1b0a9dc4dcc74aa29b51c3
Notes 22-1355/TB
microrobotics, magnetic control, low Reynold number, chirality, feedback control
Magnetic microswimmers are useful for navigating and performing tasks at small scales. To demonstrate effective control over such microswimmers, we implemented feedback control of the three-bead achiral microswimmers in both simulation and experiment. The achiral microswimmers with the ability to swim in bulk fluid are controlled wirelessly using magnetic fields generated from electromagnetic coils. The achirality of the microswimmers introduces unknown handedness resulting in uncertainty in swimming direction. We use a combination of rotating and static magnetic fields generated from an approximate Helmholtz coil system to overcome such uncertainty. There are also movement uncertainties due to environmental factors such as unsteady flow conditions. A kinematic model based feedback controller was created based on data fitting of experimental data. However, the controller was unable to yield satisfactory performance due to uncertainties from environmental factors; i.e., the time to reach target pose under adverse flow condition is too long. Following the implementation of an integral controller to control the microswimmers' swimming velocity, the mieroswimmers were able to reach the target in roughly half the time. Through simulation and experiments, we show that the feedback control law can move an achiral microswimmer from any initial conditions to a target pose.
PageCount 15
ParticipantIDs crossref_primary_10_1016_S1672_6529_16_60395_5
crossref_citationtrail_10_1016_S1672_6529_16_60395_5
springer_journals_10_1016_S1672_6529_16_60395_5
elsevier_sciencedirect_doi_10_1016_S1672_6529_16_60395_5
chongqing_primary_671964792
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20170600
PublicationDateYYYYMMDD 2017-06-01
PublicationDate_xml – month: 6
  year: 2017
  text: 20170600
PublicationDecade 2010
PublicationPlace Singapore
PublicationPlace_xml – name: Singapore
PublicationTitle Journal of bionics engineering
PublicationTitleAbbrev J Bionic Eng
PublicationTitleAlternate Journal of Bionics Engineering
PublicationYear 2017
Publisher Elsevier Ltd
Springer Singapore
Publisher_xml – name: Elsevier Ltd
– name: Springer Singapore
References Griffiths (bib47) 1999
Singh, Lillard (bib16) 2009; 86
Cheang U K, Milutinović D, Choi J, Kim M J. Towards model-based control of achiral microswimmers.
Martel, Mathieu, Felfoul, Chanu, Aboussouan, Tamaz, Pouponneau, Yahia, Beaudoin, Soulez (bib7) 2007; 90
Hong, Blackman, Kopp, Sen, Velegol (bib38) 2007; 99
Zhang, Ruh, Grützmacher, Dong, Bell, Nelson, Schönenberger (bib25) 2006; 6
Yesin, Exner, Vollmers, Nelson (bib12) 2005; 3749
Abbott, Peyer, Lagomarsino, Zhang, Dong, Kaliakatsos, Nelson (bib10) 2009; 28
Tan, Choong, Dass (bib17) 2010; 31
Purcell (bib23) 1977; 45
Kim, Becker, Ou, Julius, Kim (bib50) 2015; 17
Zhang, Abbott, Dong, Kratochvil, Bell, Nelson (bib24) 2009; 94
TX, USA, 2014.
Dreyfus, Baudry, Roper, Fermigier, Stone (bib31) 2005; 437
Ogrin, Petrov, Winlove (bib11) 2008; 100
Nice, France, 2008, 1921–1926.
Avron, Kenneth, Oaknin (bib13) 2005; 7
Cheang, Roy, Lee, Kim (bib28) 2010; 97
Temel F Z, Yesilyurt S. Magnetically actuated micro swimming of bio-inspired robots in mini channels.
2015, 518–523.
Ferreira, Agnus, Chaillet, Breguet (bib1) 2004; 9
Liu, Kim, Zhang, Sun (bib6) 2009; 28
Bae, Park (bib18) 2011; 153
Gao, Feng, Pei, Kane, Tam, Hennessy, Wang (bib30) 2013; 14
Mathieu, Beaudoin, Martel (bib9) 2006; 53
Gao, D'Agostino, Garcia-Gradilla, Orozco, Wang (bib37) 2013; 9
Cheang, Kim (bib19) 2015; 17
Gao, Kagan, Pak, Clawson, Campuzano, Chuluun-Erdene, Shipton, Fullerton, Zhang, Lauga, Wang (bib32) 2012; 8
Manesh, Cardona, Yuan, Clark, Kagan, Balasubramanian, Wang (bib36) 2010; 4
Sun, Duthaler, Nelson (bib46) 2004; 65
Leoni, Kotar, Bassetti, Cicuta, Lagomarsino (bib35) 2009; 5
Aicardi, Casalino, Bicchi, Balestrino (bib49) 1995; 2
Fusco, Chatzipirpiridis, Sivaraman, Ergeneman, Nelson, Pané (bib4) 2013; 2
Happel, Brenner (bib44) 1965
Najafi, Golestanian (bib14) 2004; 69
Atherton, Kerbyson (bib45) 1999; 17
Slotine, Li (bib51) 1991
Kim, Qiu, Kim, Ghanbari, Moon, Zhang, Nelson, Choi (bib5) 2013; 25
Clearfield (bib15) 1996; 1
Dogangil G, Ergeneman O, Abbott J J, Pané S, Hall H, Muntwyler S, Nelson B J. Toward targeted retinal drug delivery with wireless magnetic microrobots.
Volpe, Buttinoni, Vogt, Kümmerer, Bechinger (bib40) 2011; 7
Cheang, Meshkati, Kim, Kim, Fu (bib42) 2014; 90
Steager, Sakar, Kumar, Pappas, Kim (bib33) 2011; 21
Grady, Howard, Molloy, Ritter, Quate, Gillies (bib8) 1990; 17
Istanbul, Turkey, 2011, 342–347.
Zhang, Hutmacher, Chollet, Poo, Burdet (bib2) 2005; 5
Ghosh, Fischer (bib27) 2009; 9
Cheang U K, Kim H, Milutinovic D, Choi J, Rogowski L, Kim M J. Feedback control of three-bead achiral robotic microswimmers.
Ghosh, Paria, Rangarajan, Ghosh (bib20) 2013; 5
Dobson (bib22) 2006; 67
Tottori, Zhang, Qiu, Krawczyk, Franco-Obregón, Nelson (bib26) 2012; 24
Sun, Lee, Zhang (bib21) 2008; 60
Mori, Kuribayashi, Takeuchi (bib39) 2010; 96
Kim, Cheang, Kohidai, Byun, Kim (bib34) 2010; 97
Cheang, Lee, Julius, Kim (bib48) 2014; 105
Gao, Kagan, Pak, Clawson, Campuzano, Chuluun-Erdene, Shipton, Fullerton, Zhang, Lauga, Wang (CR32) 2012; 8
Gao, D’Agostino, Garcia-Gradilla, Orozco, Wang (CR37) 2013; 9
Cheang, Kim (CR19) 2015; 17
Martel, Mathieu, Felfoul, Chanu, Aboussouan, Tamaz, Pouponneau, Yahia, Beaudoin, Soulez (CR7) 2007; 90
CR39
Fusco, Chatzipirpiridis, Sivaraman, Ergeneman, Nelson, Pané (CR4) 2013; 2
CR38
Clearfield (CR15) 1996; 1
CR34
Atherton, Kerbyson (CR45) 1999; 17
CR33
Liu, Kim, Zhang, Sun (CR6) 2009; 28
Dreyfus, Baudry, Roper, Fermigier, Stone (CR31) 2005; 437
Sun, Duthaler, Nelson (CR46) 2004; 65
Aicardi, Casalino, Bicchi, Balestrino (CR49) 1995; 2
Temel, Yesilyurt (CR29) 2011
Cheang, Milutinovic, Choi, Kim (CR41) 2014
Slotine, Li (CR51) 1991
Dobson (CR22) 2006; 67
Zhang, Hutmacher, Chollet, Poo, Burdet (CR2) 2005; 5
Abbott, Peyer, Lagomarsino, Zhang, Dong, Kaliakatsos, Nelson (CR10) 2009; 28
Cheang, Kim, Milutinovic, Choi, Rogowski, Kim (CR43) 2015
Kim, Becker, Ou, Julius, Kim (CR50) 2015; 17
Volpe, Buttinoni, Vogt, Bechinger (CR40) 2011; 7
Bae, Park (CR18) 2011; 153
CR48
CR42
Avron, Kenneth, Oaknin (CR13) 2005; 7
Happel, Brenner (CR44) 1965
Singh, Lillard (CR16) 2009; 86
Leoni, Kotar, Bassetti, Cicuta, Lagomarsino (CR35) 2009; 5
Ghosh, Fischer (CR27) 2009; 9
CR14
Ferreira, Agnus, Chaillet, Breguet (CR1) 2004; 9
Tottori, Zhang, Qiu, Krawczyk, Franco-Obregón, Nelson (CR26) 2012; 24
CR11
Tan, Choong, Dass (CR17) 2010; 31
Ghosh, Paria, Rangarajan, Ghosh (CR20) 2013; 5
Purcell (CR23) 1977; 45
Mathieu, Beaudoin, Martel (CR9) 2006; 53
Grady, Howard, Molloy, Ritter, Quate, Gillies (CR8) 1990; 17
Gao, Feng, Pei, Kane, Tam, Hennessy, Wang (CR30) 2013; 14
Kim, Qiu, Kim, Ghanbari, Moon, Zhang, Nelson, Choi (CR5) 2013; 25
Yesin, Exner, Vollmers, Nelson (CR12) 2005; 3749
CR28
CR24
Manesh, Cardona, Yuan, Clark, Kagan, Balasubramanian, Wang (CR36) 2010; 4
Griffiths (CR47) 1999
Zhang, Ruh, Grützmacher, Dong, Bell, Nelson, Schönenberger (CR25) 2006; 6
Dogangil, Ergeneman, Abbott, Pané, Hall, Muntwyler, Nelson (CR3) 2008
Sun, Lee, Zhang (CR21) 2008; 60
14020245_CR11
S Tottori (14020245_CR26) 2012; 24
Y H Bae (14020245_CR18) 2011; 153
H Zhang (14020245_CR2) 2005; 5
P S S Kim (14020245_CR50) 2015; 17
14020245_CR14
M L Tan (14020245_CR17) 2010; 31
A Ghosh (14020245_CR27) 2009; 9
A Ghosh (14020245_CR20) 2013; 5
J Abbott (14020245_CR10) 2009; 28
T J Atherton (14020245_CR45) 1999; 17
D J Griffiths (14020245_CR47) 1999
S Kim (14020245_CR5) 2013; 25
W Gao (14020245_CR37) 2013; 9
J-B Mathieu (14020245_CR9) 2006; 53
L Zhang (14020245_CR25) 2006; 6
J J E Slotine (14020245_CR51) 1991
14020245_CR24
14020245_CR28
U K Cheang (14020245_CR43) 2015
G Volpe (14020245_CR40) 2011; 7
K B Manesh (14020245_CR36) 2010; 4
X Liu (14020245_CR6) 2009; 28
M Aicardi (14020245_CR49) 1995; 2
J E Avron (14020245_CR13) 2005; 7
14020245_CR33
14020245_CR34
S Fusco (14020245_CR4) 2013; 2
W Gao (14020245_CR30) 2013; 14
A Ferreira (14020245_CR1) 2004; 9
R Singh (14020245_CR16) 2009; 86
F Z Temel (14020245_CR29) 2011
14020245_CR38
Y Sun (14020245_CR46) 2004; 65
S Martel (14020245_CR7) 2007; 90
K B Yesin (14020245_CR12) 2005; 3749
14020245_CR39
J Happel (14020245_CR44) 1965
J Dobson (14020245_CR22) 2006; 67
R Dreyfus (14020245_CR31) 2005; 437
G Dogangil (14020245_CR3) 2008
M Leoni (14020245_CR35) 2009; 5
U K Cheang (14020245_CR19) 2015; 17
14020245_CR42
W Gao (14020245_CR32) 2012; 8
14020245_CR48
C Sun (14020245_CR21) 2008; 60
M S Grady (14020245_CR8) 1990; 17
A Clearfield (14020245_CR15) 1996; 1
E M Purcell (14020245_CR23) 1977; 45
U K Cheang (14020245_CR41) 2014
References_xml – volume: 17
  start-page: 405
  year: 1990
  end-page: 415
  ident: bib8
  article-title: Nonlinear magnetic stereotaxis: Three-dimensional,
  publication-title: Medical Physics
– volume: 100
  start-page: 218102
  year: 2008
  ident: bib11
  article-title: Ferromagnetic microswimmers
  publication-title: Physical Review Letters
– volume: 97
  start-page: 173702
  year: 2010
  ident: bib34
  article-title: Artificial magnetotactic motion control of
  publication-title: Applied Physics Letters
– year: 1991
  ident: bib51
  publication-title: Applied Nonlinear Control
– volume: 99
  start-page: 178103
  year: 2007
  ident: bib38
  article-title: Chemotaxis of nonbiological colloidal rods
  publication-title: Physical Review Letters
– volume: 105
  start-page: 083705
  year: 2014
  ident: bib48
  article-title: Multiple-robot drug delivery strategy through coordinated teams of microswimmers
  publication-title: Applied Physics Letters
– volume: 90
  start-page: 033007
  year: 2014
  ident: bib42
  article-title: Minimal geometric requirements for micropropulsion via magnetic rotation
  publication-title: Physical Review E
– reference: Cheang U K, Kim H, Milutinovic D, Choi J, Rogowski L, Kim M J. Feedback control of three-bead achiral robotic microswimmers.
– reference: , 2015, 518–523.
– reference: Temel F Z, Yesilyurt S. Magnetically actuated micro swimming of bio-inspired robots in mini channels.
– year: 1999
  ident: bib47
  publication-title: Introduction to Electrodynamics
– reference: , Nice, France, 2008, 1921–1926.
– volume: 53
  start-page: 292
  year: 2006
  end-page: 299
  ident: bib9
  article-title: Method of propulsion of a ferromagnetic core in the cardiovascular system through magnetic gradients generated by an MRI system
  publication-title: IEEE Transactions on Biomedical Engineering
– volume: 90
  start-page: 114105
  year: 2007
  ident: bib7
  article-title: Automatic navigation of an untethered device in the artery of a living animal using a conventional clinical magnetic resonance imaging system
  publication-title: Applied Physics Letters
– volume: 9
  start-page: 508
  year: 2004
  end-page: 519
  ident: bib1
  article-title: A smart microrobot on chip: Design, identification, and control
  publication-title: IEEE/ASME Transactions on Mechatronics
– volume: 2
  start-page: 1037
  year: 2013
  end-page: 1044
  ident: bib4
  article-title: Chitosan electrodeposition for microrobotic drug delivery
  publication-title: Advanced Healthcare Materials
– volume: 28
  start-page: 1065
  year: 2009
  end-page: 1076
  ident: bib6
  article-title: Nanonewton force sensing and control in microrobotic cell manipulation
  publication-title: International Journal of Robotics Research
– volume: 7
  start-page: 234
  year: 2005
  ident: bib13
  article-title: Pushmepullyou: An efficient micro-swimmer
  publication-title: New Journal of Physics
– volume: 86
  start-page: 215
  year: 2009
  end-page: 223
  ident: bib16
  article-title: Nanoparticle-based targeted drug delivery
  publication-title: Experimental and Molecular Pathology
– volume: 8
  start-page: 460
  year: 2012
  end-page: 467
  ident: bib32
  article-title: Cargo – towing fuel – free magnetic nanoswimmers for targeted drug delivery
  publication-title: Small
– volume: 94
  start-page: 064107
  year: 2009
  ident: bib24
  article-title: Artificial bacterial flagella: Fabrication and magnetic control
  publication-title: Applied Physics Letters
– volume: 17
  start-page: 795
  year: 1999
  end-page: 803
  ident: bib45
  article-title: Size invariant circle detection
  publication-title: Image and Vision Computing
– reference: Dogangil G, Ergeneman O, Abbott J J, Pané S, Hall H, Muntwyler S, Nelson B J. Toward targeted retinal drug delivery with wireless magnetic microrobots.
– volume: 6
  start-page: 1311
  year: 2006
  end-page: 1317
  ident: bib25
  article-title: Anomalous coiling of SiGe/Si and SiGe/Si/Cr helical nanobelts
  publication-title: Nano Letters
– volume: 17
  start-page: 145
  year: 2015
  ident: bib19
  article-title: Self-assembly of robotic micro- and nanoswimmers using magnetic nanoparticles
  publication-title: Journal of Nanoparticle Research
– volume: 67
  start-page: 55
  year: 2006
  end-page: 60
  ident: bib22
  article-title: Magnetic nanoparticles for drug delivery
  publication-title: Drug Development Research
– volume: 25
  start-page: 5829
  year: 2013
  ident: bib5
  article-title: Fabrication and characterization of magnetic microrobots for three–dimensional cell culture and targeted transportation
  publication-title: Advanced Materials
– volume: 5
  start-page: 472
  year: 2009
  end-page: 476
  ident: bib35
  article-title: A basic swimmer at low Reynolds number
  publication-title: Soft Matter
– volume: 5
  start-page: 477
  year: 2005
  end-page: 489
  ident: bib2
  article-title: Microrobotics and MEMS-based fabrication techniques for scaffold-based tissue engineering
  publication-title: Macromolecular Bioscience
– volume: 9
  start-page: 2243
  year: 2009
  end-page: 2245
  ident: bib27
  article-title: Controlled propulsion of artificial magnetic nanostructured propellers
  publication-title: Nano Letters
– volume: 69
  start-page: 062901
  year: 2004
  ident: bib14
  article-title: Simple swimmer at low Reynolds number: Three linked spheres
  publication-title: Physical Review E
– volume: 17
  start-page: 1
  year: 2015
  end-page: 15
  ident: bib50
  article-title: Imparting magnetic dipole heterogeneity to internalized iron oxide nanoparticles for microorganism swarm control
  publication-title: Journal of Nanoparticle Research
– volume: 153
  start-page: 198
  year: 2011
  end-page: 205
  ident: bib18
  article-title: Targeted drug delivery to tumors: Myths, reality and possibility
  publication-title: Journal of Controlled Release
– reference: , Istanbul, Turkey, 2011, 342–347.
– volume: 14
  start-page: 305
  year: 2013
  end-page: 310
  ident: bib30
  article-title: Bioinspired helical microswimmers based on vascular plants
  publication-title: Nano Letters
– volume: 4
  start-page: 1799
  year: 2010
  end-page: 1804
  ident: bib36
  article-title: Template-assisted fabrication of salt-independent catalytic tubular microengines
  publication-title: ACS Nano
– reference: Cheang U K, Milutinović D, Choi J, Kim M J. Towards model-based control of achiral microswimmers.
– volume: 97
  start-page: 213704
  year: 2010
  ident: bib28
  article-title: Fabrication and magnetic control of bacteria-inspired robotic microswimmers
  publication-title: Applied Physics Letters
– volume: 2
  start-page: 27
  year: 1995
  end-page: 35
  ident: bib49
  article-title: Closed loop steering of unicycle like vehicles via Lyapunov techniques
  publication-title: IEEE Robotics & Automation Magazine
– year: 1965
  ident: bib44
  publication-title: Low Reynolds Number Hydrodynamics: with Special Applications to Particulate Media
– volume: 60
  start-page: 1252
  year: 2008
  end-page: 1265
  ident: bib21
  article-title: Magnetic nanoparticles in MR imaging and drug delivery
  publication-title: Advanced Drug Delivery Reviews
– volume: 7
  start-page: 8810
  year: 2011
  end-page: 8815
  ident: bib40
  article-title: Microswimmers in patterned environments
  publication-title: Soft Matter
– volume: 31
  start-page: 184
  year: 2010
  end-page: 193
  ident: bib17
  article-title: Recent developments in liposomes, microparticles and nanoparticles for protein and peptide drug delivery
  publication-title: Peptides
– volume: 9
  start-page: 467
  year: 2013
  end-page: 471
  ident: bib37
  article-title: Multi-ful driven janus micromotors
  publication-title: Small
– volume: 24
  start-page: 811
  year: 2012
  end-page: 816
  ident: bib26
  article-title: Magnetic helical micromachines: Fabrication, controlled swimming, and cargo transport
  publication-title: Advanced Materials
– volume: 65
  start-page: 139
  year: 2004
  end-page: 149
  ident: bib46
  article-title: Autofocusing in computer microscopy: Selecting the optimal focus algorithm
  publication-title: Microscopy Research and Technique
– volume: 96
  start-page: 083701
  year: 2010
  ident: bib39
  article-title: Artificial flagellates: Analysis of advancing motions of biflagellate micro-objects
  publication-title: Applied Physics Letters
– volume: 1
  start-page: 268
  year: 1996
  ident: bib15
  article-title: Current opinion in solid state & materials science
  publication-title: Current Science
– volume: 3749
  start-page: 819
  year: 2005
  end-page: 826
  ident: bib12
  article-title: Design and control of in-vivo magnetic microrobots
  publication-title: Medical Image Computing and Computer-Assisted Intervention
– volume: 5
  start-page: 62
  year: 2013
  end-page: 68
  ident: bib20
  article-title: Velocity fluctuations in helical propulsion: How small can a propeller be
  publication-title: Journal of Physical Chemistry Letters
– volume: 45
  start-page: 3
  year: 1977
  end-page: 11
  ident: bib23
  article-title: Life at low Reynolds number
  publication-title: American Journal of Physics
– volume: 28
  start-page: 1434
  year: 2009
  end-page: 1447
  ident: bib10
  article-title: How should microrobots swim?
  publication-title: The International Journal of Robotics Research
– volume: 437
  start-page: 862
  year: 2005
  end-page: 865
  ident: bib31
  article-title: Microscopic artificial swimmers
  publication-title: Nature
– volume: 21
  start-page: 035001
  year: 2011
  ident: bib33
  article-title: Electrokinetic and optical control of bacterial microrobots
  publication-title: Journal of Micromechanics and Microengineering
– reference: , TX, USA, 2014.
– volume: 24
  start-page: 811
  year: 2012
  end-page: 816
  ident: CR26
  article-title: Magnetic helical micromachines: Fabrication, controlled swimming, and cargo transport
  publication-title: Advanced Materials
  doi: 10.1002/adma.201103818
– volume: 28
  start-page: 1434
  year: 2009
  end-page: 1447
  ident: CR10
  article-title: How should microrobots swim
  publication-title: The International Journal of Robotics Research
  doi: 10.1177/0278364909341658
– volume: 67
  start-page: 55
  year: 2006
  end-page: 60
  ident: CR22
  article-title: Magnetic nanoparticles for drug delivery
  publication-title: Drug Development Research
  doi: 10.1002/ddr.20067
– volume: 7
  start-page: 8810
  year: 2011
  end-page: 8815
  ident: CR40
  article-title: Microswimmers in patterned environments
  publication-title: Soft Matter
  doi: 10.1039/c1sm05960b
– volume: 53
  start-page: 292
  year: 2006
  end-page: 299
  ident: CR9
  article-title: Method of propulsion of a ferromagnetic core in the cardiovascular system through magnetic gradients generated by an MRI system
  publication-title: IEEE Transactions on Biomedical Engineering
  doi: 10.1109/TBME.2005.862570
– ident: CR39
– volume: 5
  start-page: 62
  year: 2013
  end-page: 68
  ident: CR20
  article-title: Velocity fluc-tuations in helical propulsion: How small can a propeller be
  publication-title: Journal of Physical Chemistry Letters
  doi: 10.1021/jz402186w
– volume: 9
  start-page: 2243
  year: 2009
  end-page: 2245
  ident: CR27
  article-title: Controlled propulsion of artificial magnetic nanostructured propellers
  publication-title: Nano Letters
  doi: 10.1021/nl900186w
– volume: 65
  start-page: 139
  year: 2004
  end-page: 149
  ident: CR46
  article-title: Autofocusing in computer microscopy: Selecting the optimal focus algorithm
  publication-title: Mi-croscopy Research and Technique
  doi: 10.1002/jemt.20118
– volume: 4
  start-page: 1799
  year: 2010
  end-page: 1804
  ident: CR36
  article-title: Template-assisted fabrication of salt-independent catalytic tubular microengines
  publication-title: ACS Nano
  doi: 10.1021/nn1000468
– volume: 28
  start-page: 1065
  year: 2009
  end-page: 1076
  ident: CR6
  article-title: Nanonewton force sensing and control in microrobotic cell manipulation
  publication-title: International Journal of Robotics Research
  doi: 10.1177/0278364909340212
– volume: 17
  start-page: 145
  year: 2015
  ident: CR19
  article-title: Self-assembly of robotic micro- and nanoswimmers using magnetic nanoparticles
  publication-title: Journal of Nanoparticle Research
  doi: 10.1007/s11051-014-2737-z
– volume: 5
  start-page: 472
  year: 2009
  end-page: 476
  ident: CR35
  article-title: A basic swimmer at low Reynolds number
  publication-title: Soft Matter
  doi: 10.1039/B812393D
– ident: CR42
– volume: 86
  start-page: 215
  year: 2009
  end-page: 223
  ident: CR16
  article-title: Nanoparticle-based targeted drug delivery
  publication-title: Experimental and Molecular Pathology
  doi: 10.1016/j.yexmp.2008.12.004
– volume: 60
  start-page: 1252
  year: 2008
  end-page: 1265
  ident: CR21
  article-title: Magnetic nanoparticles in MR imaging and drug delivery
  publication-title: Advanced Drug Delivery Re-views
  doi: 10.1016/j.addr.2008.03.018
– volume: 7
  start-page: 234
  year: 2005
  end-page: 234
  ident: CR13
  article-title: Pushmepullyou: An efficient micro-swimmer
  publication-title: New Journal of Physics
  doi: 10.1088/1367-2630/7/1/234
– volume: 25
  start-page: 5829
  year: 2013
  ident: CR5
  article-title: Fabrication and characterization of magnetic microrobots for three-dimensional cell culture and targeted transportation
  publication-title: Advanced Materials
  doi: 10.1002/adma.201370257
– volume: 9
  start-page: 508
  year: 2004
  end-page: 519
  ident: CR1
  article-title: A smart mi-crorobot on chip: Design, identification, and control
  publication-title: IEEE/ASME Transactions on Mechatronics
  doi: 10.1109/TMECH.2004.834646
– volume: 153
  start-page: 198
  year: 2011
  end-page: 205
  ident: CR18
  article-title: Targeted drug delivery to tumors: Myths, reality and possibility
  publication-title: Journal of Controlled Release
  doi: 10.1016/j.jconrel.2011.06.001
– volume: 9
  start-page: 467
  year: 2013
  end-page: 471
  ident: CR37
  article-title: Multi-ful driven janus micromotors
  publication-title: Small
  doi: 10.1002/smll.201201864
– year: 1999
  ident: CR47
  publication-title: Introduction to Electrodynamics
– volume: 2
  start-page: 1037
  year: 2013
  end-page: 1044
  ident: CR4
  article-title: Chitosan electrodeposition for micro-robotic drug delivery
  publication-title: Advanced Healthcare Materials
  doi: 10.1002/adhm.201200409
– volume: 8
  start-page: 460
  year: 2012
  end-page: 467
  ident: CR32
  article-title: Cargo — towing fuel — free magnetic nanoswimmers for targeted drug delivery
  publication-title: Small
  doi: 10.1002/smll.201101909
– ident: CR11
– volume: 5
  start-page: 477
  year: 2005
  end-page: 489
  ident: CR2
  article-title: Microrobotics and MEMS-based fabrication techniques for scaffold-based tissue engineering
  publication-title: Macromolecular Bioscience
  doi: 10.1002/mabi.200400202
– volume: 45
  start-page: 3
  year: 1977
  end-page: 11
  ident: CR23
  article-title: Life at low Reynolds number
  publication-title: American Journal of Physics
  doi: 10.1119/1.10903
– year: 1965
  ident: CR44
  publication-title: Low Reynolds Number Hydrodynamics: with Special Applications to Particulate Media
– volume: 2
  start-page: 27
  year: 1995
  end-page: 35
  ident: CR49
  article-title: Closed loop steering of unicycle like vehicles via Lyapunov techniques
  publication-title: IEEE Robotics & Automation Magazine
  doi: 10.1109/100.388294
– volume: 17
  start-page: 1
  year: 2015
  end-page: 15
  ident: CR50
  article-title: Imparting magnetic dipole heterogeneity to internalized iron oxide nanoparticles for microorganism swarm control
  publication-title: Journal of Nanoparticle Research
  doi: 10.1007/s11051-014-2856-6
– start-page: 518
  year: 2015
  end-page: 523
  ident: CR43
  article-title: Feedback control of three-bead achiral robotic microswimmers
  publication-title: IEEE International Conference on Ubiquitous Robots and Ambient Intelligence (URAI)
– year: 1991
  ident: CR51
  publication-title: Applied Nonlinear Control
– volume: 14
  start-page: 305
  year: 2013
  end-page: 310
  ident: CR30
  article-title: Bioinspired helical microswimmers based on vas-cular plants
  publication-title: Nano Letters
  doi: 10.1021/nl404044d
– ident: CR14
– volume: 17
  start-page: 405
  year: 1990
  end-page: 415
  ident: CR8
  article-title: Nonlinear magnetic stereotaxis: Three-dimensional, remote magnetic manipulation of a small object in canine brain
  publication-title: Medical Physics
  doi: 10.1118/1.596520
– volume: 90
  start-page: 114105
  year: 2007
  ident: CR7
  article-title: Automatic navigation of an untethered device in the artery of a living animal using a conventional clinical magnetic resonance imaging system
  publication-title: Applied Physics Letters
  doi: 10.1063/1.2713229
– volume: 1
  start-page: 268
  year: 1996
  ident: CR15
  article-title: Current opinion in solid state & materials science
  publication-title: Current Science
– ident: CR33
– start-page: 1921
  year: 2008
  end-page: 1926
  ident: CR3
  article-title: Toward targeted retinal drug de-livery with wireless magnetic microrobots
  publication-title: IEEE Interna-tional Conference on Intelligent Robots and Systems (IROS)
– volume: 3749
  start-page: 819
  year: 2005
  end-page: 826
  ident: CR12
  article-title: Design and control of in-vivo magnetic microrobots
  publication-title: Medical Image Computing and Computer-Assisted Intervention
– volume: 437
  start-page: 862
  year: 2005
  end-page: 865
  ident: CR31
  article-title: Microscopic artificial swimmers
  publication-title: Nature
  doi: 10.1038/nature04090
– year: 2014
  ident: CR41
  article-title: Towards model-based control of achiral microswimmers
  publication-title: ASME Dynamic Systems and Control Conference
– volume: 6
  start-page: 1311
  year: 2006
  end-page: 1317
  ident: CR25
  article-title: Anomalous coiling of SiGe/Si and SiGe/Si/Cr helical nanobelts
  publication-title: Nano Letters
  doi: 10.1021/nl052340u
– ident: CR48
– ident: CR38
– start-page: 342
  year: 2011
  end-page: 347
  ident: CR29
  article-title: Magnetically actuated micro swimming of bio-inspired robots in mini channels
  publication-title: IEEE International Conference on Mechatronics (ICM)
– volume: 31
  start-page: 184
  year: 2010
  end-page: 193
  ident: CR17
  article-title: Recent developments in liposomes, microparticles and nanoparticles for protein and peptide drug delivery
  publication-title: Peptides
  doi: 10.1016/j.peptides.2009.10.002
– ident: CR34
– volume: 17
  start-page: 795
  year: 1999
  end-page: 803
  ident: CR45
  article-title: Size invariant circle detection
  publication-title: Image and Vision Computing
  doi: 10.1016/S0262-8856(98)00160-7
– ident: CR28
– ident: CR24
– volume: 9
  start-page: 508
  year: 2004
  ident: 14020245_CR1
  publication-title: IEEE/ASME Transactions on Mechatronics
  doi: 10.1109/TMECH.2004.834646
– volume: 67
  start-page: 55
  year: 2006
  ident: 14020245_CR22
  publication-title: Drug Development Research
  doi: 10.1002/ddr.20067
– volume: 5
  start-page: 477
  year: 2005
  ident: 14020245_CR2
  publication-title: Macromolecular Bioscience
  doi: 10.1002/mabi.200400202
– volume: 8
  start-page: 460
  year: 2012
  ident: 14020245_CR32
  publication-title: Small
  doi: 10.1002/smll.201101909
– start-page: 1921
  volume-title: IEEE Interna-tional Conference on Intelligent Robots and Systems (IROS)
  year: 2008
  ident: 14020245_CR3
– volume: 53
  start-page: 292
  year: 2006
  ident: 14020245_CR9
  publication-title: IEEE Transactions on Biomedical Engineering
  doi: 10.1109/TBME.2005.862570
– volume-title: ASME Dynamic Systems and Control Conference
  year: 2014
  ident: 14020245_CR41
– volume: 17
  start-page: 1
  year: 2015
  ident: 14020245_CR50
  publication-title: Journal of Nanoparticle Research
  doi: 10.1007/s11051-014-2856-6
– volume: 31
  start-page: 184
  year: 2010
  ident: 14020245_CR17
  publication-title: Peptides
  doi: 10.1016/j.peptides.2009.10.002
– volume: 4
  start-page: 1799
  year: 2010
  ident: 14020245_CR36
  publication-title: ACS Nano
  doi: 10.1021/nn1000468
– volume: 25
  start-page: 5829
  year: 2013
  ident: 14020245_CR5
  publication-title: Advanced Materials
  doi: 10.1002/adma.201370257
– ident: 14020245_CR39
  doi: 10.1063/1.3327522
– ident: 14020245_CR42
  doi: 10.1103/PhysRevE.90.033007
– volume: 17
  start-page: 145
  year: 2015
  ident: 14020245_CR19
  publication-title: Journal of Nanoparticle Research
  doi: 10.1007/s11051-014-2737-z
– volume-title: Low Reynolds Number Hydrodynamics: with Special Applications to Particulate Media
  year: 1965
  ident: 14020245_CR44
– volume: 60
  start-page: 1252
  year: 2008
  ident: 14020245_CR21
  publication-title: Advanced Drug Delivery Re-views
  doi: 10.1016/j.addr.2008.03.018
– volume: 86
  start-page: 215
  year: 2009
  ident: 14020245_CR16
  publication-title: Experimental and Molecular Pathology
  doi: 10.1016/j.yexmp.2008.12.004
– ident: 14020245_CR34
  doi: 10.1063/1.3497275
– ident: 14020245_CR14
  doi: 10.1103/PhysRevE.69.062901
– volume: 28
  start-page: 1434
  year: 2009
  ident: 14020245_CR10
  publication-title: The International Journal of Robotics Research
  doi: 10.1177/0278364909341658
– volume: 1
  start-page: 268
  year: 1996
  ident: 14020245_CR15
  publication-title: Current Science
– volume: 9
  start-page: 2243
  year: 2009
  ident: 14020245_CR27
  publication-title: Nano Letters
  doi: 10.1021/nl900186w
– ident: 14020245_CR24
  doi: 10.1063/1.3079655
– volume: 5
  start-page: 62
  year: 2013
  ident: 14020245_CR20
  publication-title: Journal of Physical Chemistry Letters
  doi: 10.1021/jz402186w
– volume: 17
  start-page: 795
  year: 1999
  ident: 14020245_CR45
  publication-title: Image and Vision Computing
  doi: 10.1016/S0262-8856(98)00160-7
– volume: 90
  start-page: 114105
  year: 2007
  ident: 14020245_CR7
  publication-title: Applied Physics Letters
  doi: 10.1063/1.2713229
– volume: 153
  start-page: 198
  year: 2011
  ident: 14020245_CR18
  publication-title: Journal of Controlled Release
  doi: 10.1016/j.jconrel.2011.06.001
– volume: 24
  start-page: 811
  year: 2012
  ident: 14020245_CR26
  publication-title: Advanced Materials
  doi: 10.1002/adma.201103818
– ident: 14020245_CR28
  doi: 10.1063/1.3518982
– volume: 45
  start-page: 3
  year: 1977
  ident: 14020245_CR23
  publication-title: American Journal of Physics
  doi: 10.1119/1.10903
– volume: 65
  start-page: 139
  year: 2004
  ident: 14020245_CR46
  publication-title: Mi-croscopy Research and Technique
  doi: 10.1002/jemt.20118
– volume: 14
  start-page: 305
  year: 2013
  ident: 14020245_CR30
  publication-title: Nano Letters
  doi: 10.1021/nl404044d
– volume: 9
  start-page: 467
  year: 2013
  ident: 14020245_CR37
  publication-title: Small
  doi: 10.1002/smll.201201864
– ident: 14020245_CR11
  doi: 10.1103/PhysRevLett.100.218102
– volume: 3749
  start-page: 819
  year: 2005
  ident: 14020245_CR12
  publication-title: Medical Image Computing and Computer-Assisted Intervention
– volume: 28
  start-page: 1065
  year: 2009
  ident: 14020245_CR6
  publication-title: International Journal of Robotics Research
  doi: 10.1177/0278364909340212
– volume: 7
  start-page: 234
  year: 2005
  ident: 14020245_CR13
  publication-title: New Journal of Physics
  doi: 10.1088/1367-2630/7/1/234
– volume: 2
  start-page: 1037
  year: 2013
  ident: 14020245_CR4
  publication-title: Advanced Healthcare Materials
  doi: 10.1002/adhm.201200409
– volume: 5
  start-page: 472
  year: 2009
  ident: 14020245_CR35
  publication-title: Soft Matter
  doi: 10.1039/B812393D
– start-page: 342
  volume-title: IEEE International Conference on Mechatronics (ICM)
  year: 2011
  ident: 14020245_CR29
– volume: 17
  start-page: 405
  year: 1990
  ident: 14020245_CR8
  publication-title: Medical Physics
  doi: 10.1118/1.596520
– volume-title: Applied Nonlinear Control
  year: 1991
  ident: 14020245_CR51
– volume: 437
  start-page: 862
  year: 2005
  ident: 14020245_CR31
  publication-title: Nature
  doi: 10.1038/nature04090
– volume: 2
  start-page: 27
  year: 1995
  ident: 14020245_CR49
  publication-title: IEEE Robotics & Automation Magazine
  doi: 10.1109/100.388294
– volume-title: Introduction to Electrodynamics
  year: 1999
  ident: 14020245_CR47
– start-page: 518
  volume-title: IEEE International Conference on Ubiquitous Robots and Ambient Intelligence (URAI)
  year: 2015
  ident: 14020245_CR43
– ident: 14020245_CR38
  doi: 10.1103/PhysRevLett.99.178103
– volume: 6
  start-page: 1311
  year: 2006
  ident: 14020245_CR25
  publication-title: Nano Letters
  doi: 10.1021/nl052340u
– ident: 14020245_CR33
  doi: 10.1088/0960-1317/21/3/035001
– ident: 14020245_CR48
  doi: 10.1063/1.4893695
– volume: 7
  start-page: 8810
  year: 2011
  ident: 14020245_CR40
  publication-title: Soft Matter
  doi: 10.1039/c1sm05960b
SSID ssj0059283
Score 2.3244238
Snippet Magnetic microswimmers are useful for navigating and performing tasks at small scales. To demonstrate effective control over such microswimmers, we implemented...
SourceID crossref
springer
elsevier
chongqing
SourceType Enrichment Source
Index Database
Publisher
StartPage 245
SubjectTerms Artificial Intelligence
Biochemical Engineering
Bioinformatics
Biomaterials
Biomedical Engineering and Bioengineering
Biomedical Engineering/Biotechnology
chirality
Engineering
feedback control
low Reynold number
magnetic control
microrobotics
不确定性
亥姆霍兹线圈
反馈控制器
实验数据
手性
机器人
游泳能力
运动学模型
Title Feedback Control of an Achiral Robotic Microswimmer
URI http://lib.cqvip.com/qk/87903X/201702/671964792.html
https://dx.doi.org/10.1016/S1672-6529(16)60395-5
https://link.springer.com/article/10.1016/S1672-6529(16)60395-5
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB4hEBIXVKAVWx7yoQc4hE0cP-LjasVq2woOPCRulu04sKJKaHerqhd-O57EWQRSQapySuRxos_jmYk98xngizQ5l64qkrIySKqd8cRaxxPngjJbL1lpsTj57FxMr9m3G36zAuO-FgbTKqPt72x6a63jk2FEc_gwmw0vMyGp4DT8b-RodLGIjzGJWn7yuEzz4Iq2VJzYOMHWz1U8XQ_tw6NMHIs0VzzhyLFw19S3P4Pn-JeverVn2rqiyQfYjDEkGXWfuQUrvt6G9e5Uyb_bsBXn65wcRVLp4x3IJ8FNWePuybhLTidNRUxNRu5uFlqQi8Y2oTtyhgl68z8zXM_-CNeT06vxNIkHJiSOUbpIyrRglirpMlVUqQnoiMJ5JqVXqcU9OV9JXkphs3ClRpWOlWFQmDFUWZ65_BOs1k3td4E4UzqvjEgLU7HKcpObKuXW2FyEGIb7AewtYdIPHTGGFhLpvaSiA2A9cNpFrnE88uKHXiaVIfYasdfhrsVe8wGcLMX6Pt8RKPpR0S-0RgeH8J7osB9FHaft_G2Jz___sj3YoBgOtKs3-7C6-PXbH4RgZmEPW209hLXR1-_T8ye6u-pj
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT-MwEB6xRavlsuIpCgv4wAEO2SaOH_GxqqjKoz3sgsTNsh1nqRYlQLta8e-xE6cIJEBCOcXyONE39szYHn8GOOQqpdwUWZQXypNqJzTS2tDIGNeZteUk1_5w8njCRlfk7JpeL8GgPQvj0yqD7W9sem2tQ0kvoNm7m057vxPGMaPYzTdSb3TFF1j27FS0A8v90_PRpDXIVOCajdPXj7zA80GeppG68ChhxyxOBY2op1m4qco_9855vOWuXm2b1t5ouArfQxiJ-s2frsGSLdfha3Ox5OM6rIUhO0NHgVf6eAPSofNUWpm_aNDkp6OqQKpEfXMzdTXQr0pXrjk09jl6s_9Tv6S9CVfDk8vBKAp3JkSGYDyP8jgjGgtuEpEVsXIAscxYwrkVsfbbcrbgNOdMJ-6JlcgNyZ1eiFJYaJqYdAs6ZVXabUBG5cYKxeJMFaTQVKWqiKlWOmUujKG2C7sLmORdw40hGfcMX1zgLpAWOGkC3bi_9eJWLvLKPPbSYy_dW429pF34uRBr2_xAIGu1Il90HOl8wkeivVaLMozc2fsSO5__2AF8G12OL-TF6eR8F1awjw7qxZwf0Jk__LN7LraZ6_3Qd58A38TtFA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Feedback+Control+of+an+Achiral+Robotic+Microswimmer&rft.jtitle=%E4%BB%BF%E7%94%9F%E5%B7%A5%E7%A8%8B%E5%AD%A6%E6%8A%A5%EF%BC%9A%E8%8B%B1%E6%96%87%E7%89%88&rft.au=U+Kei+Cheang+Hoyeon+Kim+Dejan+Milutinovic+Jongeun+Choi+Min+Jun+Kim&rft.date=2017-06-01&rft.issn=1672-6529&rft.eissn=2543-2141&rft.volume=14&rft.issue=2&rft.spage=245&rft.epage=259&rft_id=info:doi/10.1016%2FS1672-6529%2816%2960395-5&rft.externalDocID=671964792
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F87903X%2F87903X.jpg