Feedback Control of an Achiral Robotic Microswimmer
Magnetic microswimmers are useful for navigating and performing tasks at small scales. To demonstrate effective control over such microswimmers, we implemented feedback control of the three-bead achiral microswimmers in both simulation and experiment. The achiral microswimmers with the ability to sw...
Saved in:
Published in | Journal of bionics engineering Vol. 14; no. 2; pp. 245 - 259 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Singapore
Elsevier Ltd
01.06.2017
Springer Singapore |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Magnetic microswimmers are useful for navigating and performing tasks at small scales. To demonstrate effective control over such microswimmers, we implemented feedback control of the three-bead achiral microswimmers in both simulation and experiment. The achiral microswimmers with the ability to swim in bulk fluid are controlled wirelessly using magnetic fields generated from electromagnetic coils. The achirality of the microswimmers introduces unknown handedness resulting in uncertainty in swimming direction. We use a combination of rotating and static magnetic fields generated from an approximate Helmholtz coil system to overcome such uncertainty. There are also movement uncertainties due to environmental factors such as unsteady flow conditions. A kinematic model based feedback controller was created based on data fitting of experimental data. However, the controller was unable to yield satisfactory performance due to uncertainties from environmental factors; i.e., the time to reach target pose under adverse flow condition is too long. Following the implementation of an integral controller to control the microswimmers' swimming velocity, the mieroswimmers were able to reach the target in roughly half the time. Through simulation and experiments, we show that the feedback control law can move an achiral microswimmer from any initial conditions to a target pose. |
---|---|
AbstractList | Magnetic microswimmers are useful for navigating and performing tasks at small scales. To demonstrate effective control over such microswimmers, we implemented feedback control of the three-bead achiral microswimmers in both simulation and experiment. The achiral microswimmers with the ability to swim in bulk fluid are controlled wirelessly using magnetic fields generated from electromagnetic coils. The achirality of the microswimmers introduces unknown handedness resulting in uncertainty in swimming direction. We use a combination of rotating and static magnetic fields generated from an approximate Helmholtz coil system to overcome such uncertainty. There are also movement uncertainties due to environmental factors such as unsteady flow conditions. A kinematic model based feedback controller was created based on data fitting of experimental data. However, the controller was unable to yield satisfactory performance due to uncertainties from environmental factors; i.e., the time to reach target pose under adverse flow condition is too long. Following the implementation of an integral controller to control the microswimmers’ swimming velocity, the microswimmers were able to reach the target in roughly half the time. Through simulation and experiments, we show that the feedback control law can move an achiral microswimmer from any initial conditions to a target pose. Magnetic microswimmers are useful for navigating and performing tasks at small scales. To demonstrate effective control over such microswimmers, we implemented feedback control of the three-bead achiral microswimmers in both simulation and experiment. The achiral microswimmers with the ability to swim in bulk fluid are controlled wirelessly using magnetic fields generated from electromagnetic coils. The achirality of the microswimmers introduces unknown handedness resulting in un-certainty in swimming direction. We use a combination of rotating and static magnetic fields generated from an approximate Helmholtz coil system to overcome such uncertainty. There are also movement uncertainties due to environmental factors such as unsteady flow conditions. A kinematic model based feedback controller was created based on data fitting of experimental data. However, the controller was unable to yield satisfactory performance due to uncertainties from environmental factors; i.e., the time to reach target pose under adverse flow condition is too long. Following the implementation of an integral controller to control the microswimmers’ swimming velocity, the microswimmers were able to reach the target in roughly half the time. Through simulation and experiments, we show that the feedback control law can move an achiral microswimmer from any initial conditions to a target pose. Magnetic microswimmers are useful for navigating and performing tasks at small scales. To demonstrate effective control over such microswimmers, we implemented feedback control of the three-bead achiral microswimmers in both simulation and experiment. The achiral microswimmers with the ability to swim in bulk fluid are controlled wirelessly using magnetic fields generated from electromagnetic coils. The achirality of the microswimmers introduces unknown handedness resulting in uncertainty in swimming direction. We use a combination of rotating and static magnetic fields generated from an approximate Helmholtz coil system to overcome such uncertainty. There are also movement uncertainties due to environmental factors such as unsteady flow conditions. A kinematic model based feedback controller was created based on data fitting of experimental data. However, the controller was unable to yield satisfactory performance due to uncertainties from environmental factors; i.e., the time to reach target pose under adverse flow condition is too long. Following the implementation of an integral controller to control the microswimmers' swimming velocity, the mieroswimmers were able to reach the target in roughly half the time. Through simulation and experiments, we show that the feedback control law can move an achiral microswimmer from any initial conditions to a target pose. |
Author | U Kei Cheang Hoyeon Kim Dejan Milutinovic Jongeun Choi Min Jun Kim |
AuthorAffiliation | Department of Mechanical Engineering and Mechanics, Drexel University, Philadelphia, PA 19104, USA Department of Mechanical Engineering, Southern Methodist University, Dallas, TX75275, USA Department of Computer Engineering, University of California, Santa Cruz, Santa Cruz, California 95064, USA School of Mechanical Engineering, Yonsei University, Seoul, South Korea |
Author_xml | – sequence: 1 givenname: U surname: Kei Cheang fullname: Kei Cheang, U organization: Department of Mechanical Engineering and Mechanics, Drexel University, Philadelphia, PA 19104, USA – sequence: 2 givenname: Hoyeon surname: Kim fullname: Kim, Hoyeon organization: Department of Mechanical Engineering, Southern Methodist University, Dallas, TX 75275, USA – sequence: 3 givenname: Dejan surname: Milutinović fullname: Milutinović, Dejan organization: Department of Computer Engineering, University of California, Santa Cruz, Santa Cruz, California 95064, USA – sequence: 4 givenname: Jongeun surname: Choi fullname: Choi, Jongeun organization: School of Mechanical Engineering, Yonsei University, Seoul, South Korea – sequence: 5 givenname: Min Jun surname: Kim fullname: Kim, Min Jun email: mkim@coe.drexel.edu organization: Department of Mechanical Engineering, Southern Methodist University, Dallas, TX 75275, USA |
BookMark | eNqFkM1LwzAchoNMcJv-CULxpIdqkuajwYOM4lSYCH6cQ5qmW2aXaFoV_3vTbezgZeQQAr_nfX9PRmDgvDMAnCJ4iSBiVy-IcZwyisU5YhcMZoKm9AAMMSVZihFBAzDcjRyBUdsuIaQC59kQZFNjqlLp96Twrgu-SXydKJdM9MIG1STPvvSd1cmj1cG3P3a1MuEYHNaqac3J9h6Dt-nta3Gfzp7uHorJLNUE4y6tYE5KLLhGIq-hwoyyXBvCuRGwhJBnpua04qxE8UAlKk0qrTlRCouSIp2NAd3k9tVtMLX8CHalwq9EUPbmcm0uey0ZX2tzSSN3_Y_TtlOd7QWVbfbSbEO3sc3NTZBL_xVcFN0L3mxAE__k20aw1dY4bSobjO5k5e3ehLPt4gvv5p-xfWfMOBKMcIGzP4rjj_0 |
CitedBy_id | crossref_primary_10_1038_s41598_022_21725_z crossref_primary_10_1016_j_nancom_2018_03_002 crossref_primary_10_1103_PhysRevE_108_054401 crossref_primary_10_3390_mi13071005 crossref_primary_10_3390_mi13111965 crossref_primary_10_1038_s41598_021_00153_5 crossref_primary_10_1063_5_0048277 crossref_primary_10_1002_smll_202400346 crossref_primary_10_1016_j_isci_2022_104507 crossref_primary_10_1109_TEVC_2022_3198086 crossref_primary_10_1109_TASE_2024_3394238 crossref_primary_10_1016_j_compbiomed_2022_105887 crossref_primary_10_1007_s12213_018_0107_0 crossref_primary_10_1016_j_jconrel_2019_03_031 crossref_primary_10_1109_TNB_2021_3062006 crossref_primary_10_1109_TRO_2021_3085245 crossref_primary_10_3390_mi14061209 crossref_primary_10_3390_mi13050798 crossref_primary_10_1002_smll_201704374 crossref_primary_10_1109_TCST_2021_3139192 crossref_primary_10_1109_TNB_2019_2960068 crossref_primary_10_1063_1_5090297 crossref_primary_10_1109_TNB_2019_2956470 crossref_primary_10_1109_TNB_2020_3042266 crossref_primary_10_1109_JIOT_2021_3111089 crossref_primary_10_1038_s41598_021_87010_7 crossref_primary_10_1109_TCYB_2020_3025859 crossref_primary_10_1109_TNB_2019_2919132 crossref_primary_10_1007_s12213_020_00137_0 crossref_primary_10_1021_acs_iecr_1c01409 crossref_primary_10_1109_TNANO_2019_2960126 crossref_primary_10_1039_D3NR02846A crossref_primary_10_1109_TCYB_2021_3052731 crossref_primary_10_3389_frobt_2022_1063987 crossref_primary_10_1002_aisy_202100165 |
Cites_doi | 10.1002/adma.201103818 10.1177/0278364909341658 10.1002/ddr.20067 10.1039/c1sm05960b 10.1109/TBME.2005.862570 10.1021/jz402186w 10.1021/nl900186w 10.1002/jemt.20118 10.1021/nn1000468 10.1177/0278364909340212 10.1007/s11051-014-2737-z 10.1039/B812393D 10.1016/j.yexmp.2008.12.004 10.1016/j.addr.2008.03.018 10.1088/1367-2630/7/1/234 10.1002/adma.201370257 10.1109/TMECH.2004.834646 10.1016/j.jconrel.2011.06.001 10.1002/smll.201201864 10.1002/adhm.201200409 10.1002/smll.201101909 10.1002/mabi.200400202 10.1119/1.10903 10.1109/100.388294 10.1007/s11051-014-2856-6 10.1021/nl404044d 10.1118/1.596520 10.1063/1.2713229 10.1038/nature04090 10.1021/nl052340u 10.1016/j.peptides.2009.10.002 10.1016/S0262-8856(98)00160-7 10.1063/1.3327522 10.1103/PhysRevE.90.033007 10.1063/1.3497275 10.1103/PhysRevE.69.062901 10.1063/1.3079655 10.1063/1.3518982 10.1103/PhysRevLett.100.218102 10.1103/PhysRevLett.99.178103 10.1088/0960-1317/21/3/035001 10.1063/1.4893695 |
ContentType | Journal Article |
Copyright | 2017 Jilin University Jilin University 2017 |
Copyright_xml | – notice: 2017 Jilin University – notice: Jilin University 2017 |
DBID | 2RA 92L CQIGP W94 WU4 ~WA AAYXX CITATION |
DOI | 10.1016/S1672-6529(16)60395-5 |
DatabaseName | 维普期刊资源整合服务平台 中文科技期刊数据库-CALIS站点 中文科技期刊数据库-7.0平台 中文科技期刊数据库-自然科学 中文科技期刊数据库-自然科学-生物科学 中文科技期刊数据库- 镜像站点 CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Biology Engineering |
DocumentTitleAlternate | Feedback Control of an Achiral Robotic Microswimmer |
EISSN | 2543-2141 |
EndPage | 259 |
ExternalDocumentID | 10_1016_S1672_6529_16_60395_5 S1672652917300069 671964792 |
GroupedDBID | --K --M -EM .~1 0R~ 1B1 1~. 1~5 2B. 2C. 2RA 4.4 406 457 4G. 5GY 5VR 5VS 7-5 71M 8P~ 8UJ 92E 92I 92L 92Q 93N AACTN AAEDT AAEDW AAFGU AAHNG AAIAL AAIKJ AAKOC AALRI AAOAW AAQFI AATNV AAUYE AAXUO AAYFA ABDZT ABECU ABFGW ABFTV ABJNI ABKAS ABKCH ABMAC ABMQK ABTEG ABTKH ABTMW ABXDB ABYKQ ACAOD ACBMV ACBRV ACBYP ACDAQ ACGFS ACHSB ACIGE ACIPQ ACNNM ACOKC ACRLP ACTTH ACVWB ACWMK ACZOJ ADBBV ADEZE ADKNI ADMDM ADMUD ADOXG ADRFC ADTZH ADURQ ADYFF AEBSH AECPX AEFTE AEKER AENEX AESKC AESTI AEVTX AFKWA AFNRJ AFQWF AFUIB AGDGC AGGBP AGHFR AGJBK AGMZJ AGUBO AGYEJ AHJVU AIAKS AIEXJ AIKHN AILAN AIMYW AITGF AITUG AJBFU AJDOV AJOXV AJZVZ AKQUC ALMA_UNASSIGNED_HOLDINGS AMFUW AMKLP AMRAJ AMXSW AMYLF AXJTR AXYYD BGNMA BJAXD BKOJK BLXMC CCEZO CEKLB CHBEP CQIGP CS3 CW9 DPUIP DU5 EBLON EBS EFJIC EFLBG EJD EO9 EP2 EP3 FA0 FDB FINBP FIRID FNLPD FNPLU FSGXE FYGXN GBLVA GGCAI GJIRD HZ~ IAO IKXTQ IWAJR J-C J1W JJJVA JZLTJ KOM KOV LLZTM M41 M4Y MO0 N9A NPVJJ NQJWS NU0 O-L O9- O9J OAUVE OZT P-8 P-9 P2P PC. PT4 Q38 RIG RLLFE ROL RSV SDC SDF SDG SES SNE SNPRN SOHCF SOJ SPC SRMVM SSLCW SST SSZ STPWE T5K TCJ TGP UOJIU UTJUX VEKWB VFIZW W94 WFFXF WU4 Z7X ZMTXR ~WA AGQEE FIGPU -SC -S~ AACDK AAJBT AASML AAXDM AAXKI ABAKF ABWVN ACDTI ACPIV ACRPL ADNMO AEFQL AEIPS AEMSY AFBBN AGRTI AIGIU AKRWK ANKPU CAJEC HG6 IHR ITC Q-- SJYHP U1G U5M AATTM AAYWO AAYXX ABBRH ABDBE ABFSG ACSTC ACVFH ADCNI AEUPX AEZWR AFDZB AFHIU AFOHR AFPUW AFXIZ AGCQF AGRNS AHPBZ AHWEU AIGII AIIUN AIXLP AKBMS AKYEP ATHPR AYFIA CITATION SSH |
ID | FETCH-LOGICAL-c422t-d084b297c198f0a26568ce477e90b0073ef75d76b1b1b0a9dc4dcc74aa29b51c3 |
IEDL.DBID | .~1 |
ISSN | 1672-6529 |
IngestDate | Thu Apr 24 23:02:41 EDT 2025 Tue Jul 01 00:55:05 EDT 2025 Fri Feb 21 02:31:06 EST 2025 Fri Feb 23 02:28:43 EST 2024 Wed Feb 14 10:02:12 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | magnetic control low Reynold number chirality microrobotics feedback control |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c422t-d084b297c198f0a26568ce477e90b0073ef75d76b1b1b0a9dc4dcc74aa29b51c3 |
Notes | 22-1355/TB microrobotics, magnetic control, low Reynold number, chirality, feedback control Magnetic microswimmers are useful for navigating and performing tasks at small scales. To demonstrate effective control over such microswimmers, we implemented feedback control of the three-bead achiral microswimmers in both simulation and experiment. The achiral microswimmers with the ability to swim in bulk fluid are controlled wirelessly using magnetic fields generated from electromagnetic coils. The achirality of the microswimmers introduces unknown handedness resulting in uncertainty in swimming direction. We use a combination of rotating and static magnetic fields generated from an approximate Helmholtz coil system to overcome such uncertainty. There are also movement uncertainties due to environmental factors such as unsteady flow conditions. A kinematic model based feedback controller was created based on data fitting of experimental data. However, the controller was unable to yield satisfactory performance due to uncertainties from environmental factors; i.e., the time to reach target pose under adverse flow condition is too long. Following the implementation of an integral controller to control the microswimmers' swimming velocity, the mieroswimmers were able to reach the target in roughly half the time. Through simulation and experiments, we show that the feedback control law can move an achiral microswimmer from any initial conditions to a target pose. |
PageCount | 15 |
ParticipantIDs | crossref_primary_10_1016_S1672_6529_16_60395_5 crossref_citationtrail_10_1016_S1672_6529_16_60395_5 springer_journals_10_1016_S1672_6529_16_60395_5 elsevier_sciencedirect_doi_10_1016_S1672_6529_16_60395_5 chongqing_primary_671964792 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20170600 |
PublicationDateYYYYMMDD | 2017-06-01 |
PublicationDate_xml | – month: 6 year: 2017 text: 20170600 |
PublicationDecade | 2010 |
PublicationPlace | Singapore |
PublicationPlace_xml | – name: Singapore |
PublicationTitle | Journal of bionics engineering |
PublicationTitleAbbrev | J Bionic Eng |
PublicationTitleAlternate | Journal of Bionics Engineering |
PublicationYear | 2017 |
Publisher | Elsevier Ltd Springer Singapore |
Publisher_xml | – name: Elsevier Ltd – name: Springer Singapore |
References | Griffiths (bib47) 1999 Singh, Lillard (bib16) 2009; 86 Cheang U K, Milutinović D, Choi J, Kim M J. Towards model-based control of achiral microswimmers. Martel, Mathieu, Felfoul, Chanu, Aboussouan, Tamaz, Pouponneau, Yahia, Beaudoin, Soulez (bib7) 2007; 90 Hong, Blackman, Kopp, Sen, Velegol (bib38) 2007; 99 Zhang, Ruh, Grützmacher, Dong, Bell, Nelson, Schönenberger (bib25) 2006; 6 Yesin, Exner, Vollmers, Nelson (bib12) 2005; 3749 Abbott, Peyer, Lagomarsino, Zhang, Dong, Kaliakatsos, Nelson (bib10) 2009; 28 Tan, Choong, Dass (bib17) 2010; 31 Purcell (bib23) 1977; 45 Kim, Becker, Ou, Julius, Kim (bib50) 2015; 17 Zhang, Abbott, Dong, Kratochvil, Bell, Nelson (bib24) 2009; 94 TX, USA, 2014. Dreyfus, Baudry, Roper, Fermigier, Stone (bib31) 2005; 437 Ogrin, Petrov, Winlove (bib11) 2008; 100 Nice, France, 2008, 1921–1926. Avron, Kenneth, Oaknin (bib13) 2005; 7 Cheang, Roy, Lee, Kim (bib28) 2010; 97 Temel F Z, Yesilyurt S. Magnetically actuated micro swimming of bio-inspired robots in mini channels. 2015, 518–523. Ferreira, Agnus, Chaillet, Breguet (bib1) 2004; 9 Liu, Kim, Zhang, Sun (bib6) 2009; 28 Bae, Park (bib18) 2011; 153 Gao, Feng, Pei, Kane, Tam, Hennessy, Wang (bib30) 2013; 14 Mathieu, Beaudoin, Martel (bib9) 2006; 53 Gao, D'Agostino, Garcia-Gradilla, Orozco, Wang (bib37) 2013; 9 Cheang, Kim (bib19) 2015; 17 Gao, Kagan, Pak, Clawson, Campuzano, Chuluun-Erdene, Shipton, Fullerton, Zhang, Lauga, Wang (bib32) 2012; 8 Manesh, Cardona, Yuan, Clark, Kagan, Balasubramanian, Wang (bib36) 2010; 4 Sun, Duthaler, Nelson (bib46) 2004; 65 Leoni, Kotar, Bassetti, Cicuta, Lagomarsino (bib35) 2009; 5 Aicardi, Casalino, Bicchi, Balestrino (bib49) 1995; 2 Fusco, Chatzipirpiridis, Sivaraman, Ergeneman, Nelson, Pané (bib4) 2013; 2 Happel, Brenner (bib44) 1965 Najafi, Golestanian (bib14) 2004; 69 Atherton, Kerbyson (bib45) 1999; 17 Slotine, Li (bib51) 1991 Kim, Qiu, Kim, Ghanbari, Moon, Zhang, Nelson, Choi (bib5) 2013; 25 Clearfield (bib15) 1996; 1 Dogangil G, Ergeneman O, Abbott J J, Pané S, Hall H, Muntwyler S, Nelson B J. Toward targeted retinal drug delivery with wireless magnetic microrobots. Volpe, Buttinoni, Vogt, Kümmerer, Bechinger (bib40) 2011; 7 Cheang, Meshkati, Kim, Kim, Fu (bib42) 2014; 90 Steager, Sakar, Kumar, Pappas, Kim (bib33) 2011; 21 Grady, Howard, Molloy, Ritter, Quate, Gillies (bib8) 1990; 17 Istanbul, Turkey, 2011, 342–347. Zhang, Hutmacher, Chollet, Poo, Burdet (bib2) 2005; 5 Ghosh, Fischer (bib27) 2009; 9 Cheang U K, Kim H, Milutinovic D, Choi J, Rogowski L, Kim M J. Feedback control of three-bead achiral robotic microswimmers. Ghosh, Paria, Rangarajan, Ghosh (bib20) 2013; 5 Dobson (bib22) 2006; 67 Tottori, Zhang, Qiu, Krawczyk, Franco-Obregón, Nelson (bib26) 2012; 24 Sun, Lee, Zhang (bib21) 2008; 60 Mori, Kuribayashi, Takeuchi (bib39) 2010; 96 Kim, Cheang, Kohidai, Byun, Kim (bib34) 2010; 97 Cheang, Lee, Julius, Kim (bib48) 2014; 105 Gao, Kagan, Pak, Clawson, Campuzano, Chuluun-Erdene, Shipton, Fullerton, Zhang, Lauga, Wang (CR32) 2012; 8 Gao, D’Agostino, Garcia-Gradilla, Orozco, Wang (CR37) 2013; 9 Cheang, Kim (CR19) 2015; 17 Martel, Mathieu, Felfoul, Chanu, Aboussouan, Tamaz, Pouponneau, Yahia, Beaudoin, Soulez (CR7) 2007; 90 CR39 Fusco, Chatzipirpiridis, Sivaraman, Ergeneman, Nelson, Pané (CR4) 2013; 2 CR38 Clearfield (CR15) 1996; 1 CR34 Atherton, Kerbyson (CR45) 1999; 17 CR33 Liu, Kim, Zhang, Sun (CR6) 2009; 28 Dreyfus, Baudry, Roper, Fermigier, Stone (CR31) 2005; 437 Sun, Duthaler, Nelson (CR46) 2004; 65 Aicardi, Casalino, Bicchi, Balestrino (CR49) 1995; 2 Temel, Yesilyurt (CR29) 2011 Cheang, Milutinovic, Choi, Kim (CR41) 2014 Slotine, Li (CR51) 1991 Dobson (CR22) 2006; 67 Zhang, Hutmacher, Chollet, Poo, Burdet (CR2) 2005; 5 Abbott, Peyer, Lagomarsino, Zhang, Dong, Kaliakatsos, Nelson (CR10) 2009; 28 Cheang, Kim, Milutinovic, Choi, Rogowski, Kim (CR43) 2015 Kim, Becker, Ou, Julius, Kim (CR50) 2015; 17 Volpe, Buttinoni, Vogt, Bechinger (CR40) 2011; 7 Bae, Park (CR18) 2011; 153 CR48 CR42 Avron, Kenneth, Oaknin (CR13) 2005; 7 Happel, Brenner (CR44) 1965 Singh, Lillard (CR16) 2009; 86 Leoni, Kotar, Bassetti, Cicuta, Lagomarsino (CR35) 2009; 5 Ghosh, Fischer (CR27) 2009; 9 CR14 Ferreira, Agnus, Chaillet, Breguet (CR1) 2004; 9 Tottori, Zhang, Qiu, Krawczyk, Franco-Obregón, Nelson (CR26) 2012; 24 CR11 Tan, Choong, Dass (CR17) 2010; 31 Ghosh, Paria, Rangarajan, Ghosh (CR20) 2013; 5 Purcell (CR23) 1977; 45 Mathieu, Beaudoin, Martel (CR9) 2006; 53 Grady, Howard, Molloy, Ritter, Quate, Gillies (CR8) 1990; 17 Gao, Feng, Pei, Kane, Tam, Hennessy, Wang (CR30) 2013; 14 Kim, Qiu, Kim, Ghanbari, Moon, Zhang, Nelson, Choi (CR5) 2013; 25 Yesin, Exner, Vollmers, Nelson (CR12) 2005; 3749 CR28 CR24 Manesh, Cardona, Yuan, Clark, Kagan, Balasubramanian, Wang (CR36) 2010; 4 Griffiths (CR47) 1999 Zhang, Ruh, Grützmacher, Dong, Bell, Nelson, Schönenberger (CR25) 2006; 6 Dogangil, Ergeneman, Abbott, Pané, Hall, Muntwyler, Nelson (CR3) 2008 Sun, Lee, Zhang (CR21) 2008; 60 14020245_CR11 S Tottori (14020245_CR26) 2012; 24 Y H Bae (14020245_CR18) 2011; 153 H Zhang (14020245_CR2) 2005; 5 P S S Kim (14020245_CR50) 2015; 17 14020245_CR14 M L Tan (14020245_CR17) 2010; 31 A Ghosh (14020245_CR27) 2009; 9 A Ghosh (14020245_CR20) 2013; 5 J Abbott (14020245_CR10) 2009; 28 T J Atherton (14020245_CR45) 1999; 17 D J Griffiths (14020245_CR47) 1999 S Kim (14020245_CR5) 2013; 25 W Gao (14020245_CR37) 2013; 9 J-B Mathieu (14020245_CR9) 2006; 53 L Zhang (14020245_CR25) 2006; 6 J J E Slotine (14020245_CR51) 1991 14020245_CR24 14020245_CR28 U K Cheang (14020245_CR43) 2015 G Volpe (14020245_CR40) 2011; 7 K B Manesh (14020245_CR36) 2010; 4 X Liu (14020245_CR6) 2009; 28 M Aicardi (14020245_CR49) 1995; 2 J E Avron (14020245_CR13) 2005; 7 14020245_CR33 14020245_CR34 S Fusco (14020245_CR4) 2013; 2 W Gao (14020245_CR30) 2013; 14 A Ferreira (14020245_CR1) 2004; 9 R Singh (14020245_CR16) 2009; 86 F Z Temel (14020245_CR29) 2011 14020245_CR38 Y Sun (14020245_CR46) 2004; 65 S Martel (14020245_CR7) 2007; 90 K B Yesin (14020245_CR12) 2005; 3749 14020245_CR39 J Happel (14020245_CR44) 1965 J Dobson (14020245_CR22) 2006; 67 R Dreyfus (14020245_CR31) 2005; 437 G Dogangil (14020245_CR3) 2008 M Leoni (14020245_CR35) 2009; 5 U K Cheang (14020245_CR19) 2015; 17 14020245_CR42 W Gao (14020245_CR32) 2012; 8 14020245_CR48 C Sun (14020245_CR21) 2008; 60 M S Grady (14020245_CR8) 1990; 17 A Clearfield (14020245_CR15) 1996; 1 E M Purcell (14020245_CR23) 1977; 45 U K Cheang (14020245_CR41) 2014 |
References_xml | – volume: 17 start-page: 405 year: 1990 end-page: 415 ident: bib8 article-title: Nonlinear magnetic stereotaxis: Three-dimensional, publication-title: Medical Physics – volume: 100 start-page: 218102 year: 2008 ident: bib11 article-title: Ferromagnetic microswimmers publication-title: Physical Review Letters – volume: 97 start-page: 173702 year: 2010 ident: bib34 article-title: Artificial magnetotactic motion control of publication-title: Applied Physics Letters – year: 1991 ident: bib51 publication-title: Applied Nonlinear Control – volume: 99 start-page: 178103 year: 2007 ident: bib38 article-title: Chemotaxis of nonbiological colloidal rods publication-title: Physical Review Letters – volume: 105 start-page: 083705 year: 2014 ident: bib48 article-title: Multiple-robot drug delivery strategy through coordinated teams of microswimmers publication-title: Applied Physics Letters – volume: 90 start-page: 033007 year: 2014 ident: bib42 article-title: Minimal geometric requirements for micropropulsion via magnetic rotation publication-title: Physical Review E – reference: Cheang U K, Kim H, Milutinovic D, Choi J, Rogowski L, Kim M J. Feedback control of three-bead achiral robotic microswimmers. – reference: , 2015, 518–523. – reference: Temel F Z, Yesilyurt S. Magnetically actuated micro swimming of bio-inspired robots in mini channels. – year: 1999 ident: bib47 publication-title: Introduction to Electrodynamics – reference: , Nice, France, 2008, 1921–1926. – volume: 53 start-page: 292 year: 2006 end-page: 299 ident: bib9 article-title: Method of propulsion of a ferromagnetic core in the cardiovascular system through magnetic gradients generated by an MRI system publication-title: IEEE Transactions on Biomedical Engineering – volume: 90 start-page: 114105 year: 2007 ident: bib7 article-title: Automatic navigation of an untethered device in the artery of a living animal using a conventional clinical magnetic resonance imaging system publication-title: Applied Physics Letters – volume: 9 start-page: 508 year: 2004 end-page: 519 ident: bib1 article-title: A smart microrobot on chip: Design, identification, and control publication-title: IEEE/ASME Transactions on Mechatronics – volume: 2 start-page: 1037 year: 2013 end-page: 1044 ident: bib4 article-title: Chitosan electrodeposition for microrobotic drug delivery publication-title: Advanced Healthcare Materials – volume: 28 start-page: 1065 year: 2009 end-page: 1076 ident: bib6 article-title: Nanonewton force sensing and control in microrobotic cell manipulation publication-title: International Journal of Robotics Research – volume: 7 start-page: 234 year: 2005 ident: bib13 article-title: Pushmepullyou: An efficient micro-swimmer publication-title: New Journal of Physics – volume: 86 start-page: 215 year: 2009 end-page: 223 ident: bib16 article-title: Nanoparticle-based targeted drug delivery publication-title: Experimental and Molecular Pathology – volume: 8 start-page: 460 year: 2012 end-page: 467 ident: bib32 article-title: Cargo – towing fuel – free magnetic nanoswimmers for targeted drug delivery publication-title: Small – volume: 94 start-page: 064107 year: 2009 ident: bib24 article-title: Artificial bacterial flagella: Fabrication and magnetic control publication-title: Applied Physics Letters – volume: 17 start-page: 795 year: 1999 end-page: 803 ident: bib45 article-title: Size invariant circle detection publication-title: Image and Vision Computing – reference: Dogangil G, Ergeneman O, Abbott J J, Pané S, Hall H, Muntwyler S, Nelson B J. Toward targeted retinal drug delivery with wireless magnetic microrobots. – volume: 6 start-page: 1311 year: 2006 end-page: 1317 ident: bib25 article-title: Anomalous coiling of SiGe/Si and SiGe/Si/Cr helical nanobelts publication-title: Nano Letters – volume: 17 start-page: 145 year: 2015 ident: bib19 article-title: Self-assembly of robotic micro- and nanoswimmers using magnetic nanoparticles publication-title: Journal of Nanoparticle Research – volume: 67 start-page: 55 year: 2006 end-page: 60 ident: bib22 article-title: Magnetic nanoparticles for drug delivery publication-title: Drug Development Research – volume: 25 start-page: 5829 year: 2013 ident: bib5 article-title: Fabrication and characterization of magnetic microrobots for three–dimensional cell culture and targeted transportation publication-title: Advanced Materials – volume: 5 start-page: 472 year: 2009 end-page: 476 ident: bib35 article-title: A basic swimmer at low Reynolds number publication-title: Soft Matter – volume: 5 start-page: 477 year: 2005 end-page: 489 ident: bib2 article-title: Microrobotics and MEMS-based fabrication techniques for scaffold-based tissue engineering publication-title: Macromolecular Bioscience – volume: 9 start-page: 2243 year: 2009 end-page: 2245 ident: bib27 article-title: Controlled propulsion of artificial magnetic nanostructured propellers publication-title: Nano Letters – volume: 69 start-page: 062901 year: 2004 ident: bib14 article-title: Simple swimmer at low Reynolds number: Three linked spheres publication-title: Physical Review E – volume: 17 start-page: 1 year: 2015 end-page: 15 ident: bib50 article-title: Imparting magnetic dipole heterogeneity to internalized iron oxide nanoparticles for microorganism swarm control publication-title: Journal of Nanoparticle Research – volume: 153 start-page: 198 year: 2011 end-page: 205 ident: bib18 article-title: Targeted drug delivery to tumors: Myths, reality and possibility publication-title: Journal of Controlled Release – reference: , Istanbul, Turkey, 2011, 342–347. – volume: 14 start-page: 305 year: 2013 end-page: 310 ident: bib30 article-title: Bioinspired helical microswimmers based on vascular plants publication-title: Nano Letters – volume: 4 start-page: 1799 year: 2010 end-page: 1804 ident: bib36 article-title: Template-assisted fabrication of salt-independent catalytic tubular microengines publication-title: ACS Nano – reference: Cheang U K, Milutinović D, Choi J, Kim M J. Towards model-based control of achiral microswimmers. – volume: 97 start-page: 213704 year: 2010 ident: bib28 article-title: Fabrication and magnetic control of bacteria-inspired robotic microswimmers publication-title: Applied Physics Letters – volume: 2 start-page: 27 year: 1995 end-page: 35 ident: bib49 article-title: Closed loop steering of unicycle like vehicles via Lyapunov techniques publication-title: IEEE Robotics & Automation Magazine – year: 1965 ident: bib44 publication-title: Low Reynolds Number Hydrodynamics: with Special Applications to Particulate Media – volume: 60 start-page: 1252 year: 2008 end-page: 1265 ident: bib21 article-title: Magnetic nanoparticles in MR imaging and drug delivery publication-title: Advanced Drug Delivery Reviews – volume: 7 start-page: 8810 year: 2011 end-page: 8815 ident: bib40 article-title: Microswimmers in patterned environments publication-title: Soft Matter – volume: 31 start-page: 184 year: 2010 end-page: 193 ident: bib17 article-title: Recent developments in liposomes, microparticles and nanoparticles for protein and peptide drug delivery publication-title: Peptides – volume: 9 start-page: 467 year: 2013 end-page: 471 ident: bib37 article-title: Multi-ful driven janus micromotors publication-title: Small – volume: 24 start-page: 811 year: 2012 end-page: 816 ident: bib26 article-title: Magnetic helical micromachines: Fabrication, controlled swimming, and cargo transport publication-title: Advanced Materials – volume: 65 start-page: 139 year: 2004 end-page: 149 ident: bib46 article-title: Autofocusing in computer microscopy: Selecting the optimal focus algorithm publication-title: Microscopy Research and Technique – volume: 96 start-page: 083701 year: 2010 ident: bib39 article-title: Artificial flagellates: Analysis of advancing motions of biflagellate micro-objects publication-title: Applied Physics Letters – volume: 1 start-page: 268 year: 1996 ident: bib15 article-title: Current opinion in solid state & materials science publication-title: Current Science – volume: 3749 start-page: 819 year: 2005 end-page: 826 ident: bib12 article-title: Design and control of in-vivo magnetic microrobots publication-title: Medical Image Computing and Computer-Assisted Intervention – volume: 5 start-page: 62 year: 2013 end-page: 68 ident: bib20 article-title: Velocity fluctuations in helical propulsion: How small can a propeller be publication-title: Journal of Physical Chemistry Letters – volume: 45 start-page: 3 year: 1977 end-page: 11 ident: bib23 article-title: Life at low Reynolds number publication-title: American Journal of Physics – volume: 28 start-page: 1434 year: 2009 end-page: 1447 ident: bib10 article-title: How should microrobots swim? publication-title: The International Journal of Robotics Research – volume: 437 start-page: 862 year: 2005 end-page: 865 ident: bib31 article-title: Microscopic artificial swimmers publication-title: Nature – volume: 21 start-page: 035001 year: 2011 ident: bib33 article-title: Electrokinetic and optical control of bacterial microrobots publication-title: Journal of Micromechanics and Microengineering – reference: , TX, USA, 2014. – volume: 24 start-page: 811 year: 2012 end-page: 816 ident: CR26 article-title: Magnetic helical micromachines: Fabrication, controlled swimming, and cargo transport publication-title: Advanced Materials doi: 10.1002/adma.201103818 – volume: 28 start-page: 1434 year: 2009 end-page: 1447 ident: CR10 article-title: How should microrobots swim publication-title: The International Journal of Robotics Research doi: 10.1177/0278364909341658 – volume: 67 start-page: 55 year: 2006 end-page: 60 ident: CR22 article-title: Magnetic nanoparticles for drug delivery publication-title: Drug Development Research doi: 10.1002/ddr.20067 – volume: 7 start-page: 8810 year: 2011 end-page: 8815 ident: CR40 article-title: Microswimmers in patterned environments publication-title: Soft Matter doi: 10.1039/c1sm05960b – volume: 53 start-page: 292 year: 2006 end-page: 299 ident: CR9 article-title: Method of propulsion of a ferromagnetic core in the cardiovascular system through magnetic gradients generated by an MRI system publication-title: IEEE Transactions on Biomedical Engineering doi: 10.1109/TBME.2005.862570 – ident: CR39 – volume: 5 start-page: 62 year: 2013 end-page: 68 ident: CR20 article-title: Velocity fluc-tuations in helical propulsion: How small can a propeller be publication-title: Journal of Physical Chemistry Letters doi: 10.1021/jz402186w – volume: 9 start-page: 2243 year: 2009 end-page: 2245 ident: CR27 article-title: Controlled propulsion of artificial magnetic nanostructured propellers publication-title: Nano Letters doi: 10.1021/nl900186w – volume: 65 start-page: 139 year: 2004 end-page: 149 ident: CR46 article-title: Autofocusing in computer microscopy: Selecting the optimal focus algorithm publication-title: Mi-croscopy Research and Technique doi: 10.1002/jemt.20118 – volume: 4 start-page: 1799 year: 2010 end-page: 1804 ident: CR36 article-title: Template-assisted fabrication of salt-independent catalytic tubular microengines publication-title: ACS Nano doi: 10.1021/nn1000468 – volume: 28 start-page: 1065 year: 2009 end-page: 1076 ident: CR6 article-title: Nanonewton force sensing and control in microrobotic cell manipulation publication-title: International Journal of Robotics Research doi: 10.1177/0278364909340212 – volume: 17 start-page: 145 year: 2015 ident: CR19 article-title: Self-assembly of robotic micro- and nanoswimmers using magnetic nanoparticles publication-title: Journal of Nanoparticle Research doi: 10.1007/s11051-014-2737-z – volume: 5 start-page: 472 year: 2009 end-page: 476 ident: CR35 article-title: A basic swimmer at low Reynolds number publication-title: Soft Matter doi: 10.1039/B812393D – ident: CR42 – volume: 86 start-page: 215 year: 2009 end-page: 223 ident: CR16 article-title: Nanoparticle-based targeted drug delivery publication-title: Experimental and Molecular Pathology doi: 10.1016/j.yexmp.2008.12.004 – volume: 60 start-page: 1252 year: 2008 end-page: 1265 ident: CR21 article-title: Magnetic nanoparticles in MR imaging and drug delivery publication-title: Advanced Drug Delivery Re-views doi: 10.1016/j.addr.2008.03.018 – volume: 7 start-page: 234 year: 2005 end-page: 234 ident: CR13 article-title: Pushmepullyou: An efficient micro-swimmer publication-title: New Journal of Physics doi: 10.1088/1367-2630/7/1/234 – volume: 25 start-page: 5829 year: 2013 ident: CR5 article-title: Fabrication and characterization of magnetic microrobots for three-dimensional cell culture and targeted transportation publication-title: Advanced Materials doi: 10.1002/adma.201370257 – volume: 9 start-page: 508 year: 2004 end-page: 519 ident: CR1 article-title: A smart mi-crorobot on chip: Design, identification, and control publication-title: IEEE/ASME Transactions on Mechatronics doi: 10.1109/TMECH.2004.834646 – volume: 153 start-page: 198 year: 2011 end-page: 205 ident: CR18 article-title: Targeted drug delivery to tumors: Myths, reality and possibility publication-title: Journal of Controlled Release doi: 10.1016/j.jconrel.2011.06.001 – volume: 9 start-page: 467 year: 2013 end-page: 471 ident: CR37 article-title: Multi-ful driven janus micromotors publication-title: Small doi: 10.1002/smll.201201864 – year: 1999 ident: CR47 publication-title: Introduction to Electrodynamics – volume: 2 start-page: 1037 year: 2013 end-page: 1044 ident: CR4 article-title: Chitosan electrodeposition for micro-robotic drug delivery publication-title: Advanced Healthcare Materials doi: 10.1002/adhm.201200409 – volume: 8 start-page: 460 year: 2012 end-page: 467 ident: CR32 article-title: Cargo — towing fuel — free magnetic nanoswimmers for targeted drug delivery publication-title: Small doi: 10.1002/smll.201101909 – ident: CR11 – volume: 5 start-page: 477 year: 2005 end-page: 489 ident: CR2 article-title: Microrobotics and MEMS-based fabrication techniques for scaffold-based tissue engineering publication-title: Macromolecular Bioscience doi: 10.1002/mabi.200400202 – volume: 45 start-page: 3 year: 1977 end-page: 11 ident: CR23 article-title: Life at low Reynolds number publication-title: American Journal of Physics doi: 10.1119/1.10903 – year: 1965 ident: CR44 publication-title: Low Reynolds Number Hydrodynamics: with Special Applications to Particulate Media – volume: 2 start-page: 27 year: 1995 end-page: 35 ident: CR49 article-title: Closed loop steering of unicycle like vehicles via Lyapunov techniques publication-title: IEEE Robotics & Automation Magazine doi: 10.1109/100.388294 – volume: 17 start-page: 1 year: 2015 end-page: 15 ident: CR50 article-title: Imparting magnetic dipole heterogeneity to internalized iron oxide nanoparticles for microorganism swarm control publication-title: Journal of Nanoparticle Research doi: 10.1007/s11051-014-2856-6 – start-page: 518 year: 2015 end-page: 523 ident: CR43 article-title: Feedback control of three-bead achiral robotic microswimmers publication-title: IEEE International Conference on Ubiquitous Robots and Ambient Intelligence (URAI) – year: 1991 ident: CR51 publication-title: Applied Nonlinear Control – volume: 14 start-page: 305 year: 2013 end-page: 310 ident: CR30 article-title: Bioinspired helical microswimmers based on vas-cular plants publication-title: Nano Letters doi: 10.1021/nl404044d – ident: CR14 – volume: 17 start-page: 405 year: 1990 end-page: 415 ident: CR8 article-title: Nonlinear magnetic stereotaxis: Three-dimensional, remote magnetic manipulation of a small object in canine brain publication-title: Medical Physics doi: 10.1118/1.596520 – volume: 90 start-page: 114105 year: 2007 ident: CR7 article-title: Automatic navigation of an untethered device in the artery of a living animal using a conventional clinical magnetic resonance imaging system publication-title: Applied Physics Letters doi: 10.1063/1.2713229 – volume: 1 start-page: 268 year: 1996 ident: CR15 article-title: Current opinion in solid state & materials science publication-title: Current Science – ident: CR33 – start-page: 1921 year: 2008 end-page: 1926 ident: CR3 article-title: Toward targeted retinal drug de-livery with wireless magnetic microrobots publication-title: IEEE Interna-tional Conference on Intelligent Robots and Systems (IROS) – volume: 3749 start-page: 819 year: 2005 end-page: 826 ident: CR12 article-title: Design and control of in-vivo magnetic microrobots publication-title: Medical Image Computing and Computer-Assisted Intervention – volume: 437 start-page: 862 year: 2005 end-page: 865 ident: CR31 article-title: Microscopic artificial swimmers publication-title: Nature doi: 10.1038/nature04090 – year: 2014 ident: CR41 article-title: Towards model-based control of achiral microswimmers publication-title: ASME Dynamic Systems and Control Conference – volume: 6 start-page: 1311 year: 2006 end-page: 1317 ident: CR25 article-title: Anomalous coiling of SiGe/Si and SiGe/Si/Cr helical nanobelts publication-title: Nano Letters doi: 10.1021/nl052340u – ident: CR48 – ident: CR38 – start-page: 342 year: 2011 end-page: 347 ident: CR29 article-title: Magnetically actuated micro swimming of bio-inspired robots in mini channels publication-title: IEEE International Conference on Mechatronics (ICM) – volume: 31 start-page: 184 year: 2010 end-page: 193 ident: CR17 article-title: Recent developments in liposomes, microparticles and nanoparticles for protein and peptide drug delivery publication-title: Peptides doi: 10.1016/j.peptides.2009.10.002 – ident: CR34 – volume: 17 start-page: 795 year: 1999 end-page: 803 ident: CR45 article-title: Size invariant circle detection publication-title: Image and Vision Computing doi: 10.1016/S0262-8856(98)00160-7 – ident: CR28 – ident: CR24 – volume: 9 start-page: 508 year: 2004 ident: 14020245_CR1 publication-title: IEEE/ASME Transactions on Mechatronics doi: 10.1109/TMECH.2004.834646 – volume: 67 start-page: 55 year: 2006 ident: 14020245_CR22 publication-title: Drug Development Research doi: 10.1002/ddr.20067 – volume: 5 start-page: 477 year: 2005 ident: 14020245_CR2 publication-title: Macromolecular Bioscience doi: 10.1002/mabi.200400202 – volume: 8 start-page: 460 year: 2012 ident: 14020245_CR32 publication-title: Small doi: 10.1002/smll.201101909 – start-page: 1921 volume-title: IEEE Interna-tional Conference on Intelligent Robots and Systems (IROS) year: 2008 ident: 14020245_CR3 – volume: 53 start-page: 292 year: 2006 ident: 14020245_CR9 publication-title: IEEE Transactions on Biomedical Engineering doi: 10.1109/TBME.2005.862570 – volume-title: ASME Dynamic Systems and Control Conference year: 2014 ident: 14020245_CR41 – volume: 17 start-page: 1 year: 2015 ident: 14020245_CR50 publication-title: Journal of Nanoparticle Research doi: 10.1007/s11051-014-2856-6 – volume: 31 start-page: 184 year: 2010 ident: 14020245_CR17 publication-title: Peptides doi: 10.1016/j.peptides.2009.10.002 – volume: 4 start-page: 1799 year: 2010 ident: 14020245_CR36 publication-title: ACS Nano doi: 10.1021/nn1000468 – volume: 25 start-page: 5829 year: 2013 ident: 14020245_CR5 publication-title: Advanced Materials doi: 10.1002/adma.201370257 – ident: 14020245_CR39 doi: 10.1063/1.3327522 – ident: 14020245_CR42 doi: 10.1103/PhysRevE.90.033007 – volume: 17 start-page: 145 year: 2015 ident: 14020245_CR19 publication-title: Journal of Nanoparticle Research doi: 10.1007/s11051-014-2737-z – volume-title: Low Reynolds Number Hydrodynamics: with Special Applications to Particulate Media year: 1965 ident: 14020245_CR44 – volume: 60 start-page: 1252 year: 2008 ident: 14020245_CR21 publication-title: Advanced Drug Delivery Re-views doi: 10.1016/j.addr.2008.03.018 – volume: 86 start-page: 215 year: 2009 ident: 14020245_CR16 publication-title: Experimental and Molecular Pathology doi: 10.1016/j.yexmp.2008.12.004 – ident: 14020245_CR34 doi: 10.1063/1.3497275 – ident: 14020245_CR14 doi: 10.1103/PhysRevE.69.062901 – volume: 28 start-page: 1434 year: 2009 ident: 14020245_CR10 publication-title: The International Journal of Robotics Research doi: 10.1177/0278364909341658 – volume: 1 start-page: 268 year: 1996 ident: 14020245_CR15 publication-title: Current Science – volume: 9 start-page: 2243 year: 2009 ident: 14020245_CR27 publication-title: Nano Letters doi: 10.1021/nl900186w – ident: 14020245_CR24 doi: 10.1063/1.3079655 – volume: 5 start-page: 62 year: 2013 ident: 14020245_CR20 publication-title: Journal of Physical Chemistry Letters doi: 10.1021/jz402186w – volume: 17 start-page: 795 year: 1999 ident: 14020245_CR45 publication-title: Image and Vision Computing doi: 10.1016/S0262-8856(98)00160-7 – volume: 90 start-page: 114105 year: 2007 ident: 14020245_CR7 publication-title: Applied Physics Letters doi: 10.1063/1.2713229 – volume: 153 start-page: 198 year: 2011 ident: 14020245_CR18 publication-title: Journal of Controlled Release doi: 10.1016/j.jconrel.2011.06.001 – volume: 24 start-page: 811 year: 2012 ident: 14020245_CR26 publication-title: Advanced Materials doi: 10.1002/adma.201103818 – ident: 14020245_CR28 doi: 10.1063/1.3518982 – volume: 45 start-page: 3 year: 1977 ident: 14020245_CR23 publication-title: American Journal of Physics doi: 10.1119/1.10903 – volume: 65 start-page: 139 year: 2004 ident: 14020245_CR46 publication-title: Mi-croscopy Research and Technique doi: 10.1002/jemt.20118 – volume: 14 start-page: 305 year: 2013 ident: 14020245_CR30 publication-title: Nano Letters doi: 10.1021/nl404044d – volume: 9 start-page: 467 year: 2013 ident: 14020245_CR37 publication-title: Small doi: 10.1002/smll.201201864 – ident: 14020245_CR11 doi: 10.1103/PhysRevLett.100.218102 – volume: 3749 start-page: 819 year: 2005 ident: 14020245_CR12 publication-title: Medical Image Computing and Computer-Assisted Intervention – volume: 28 start-page: 1065 year: 2009 ident: 14020245_CR6 publication-title: International Journal of Robotics Research doi: 10.1177/0278364909340212 – volume: 7 start-page: 234 year: 2005 ident: 14020245_CR13 publication-title: New Journal of Physics doi: 10.1088/1367-2630/7/1/234 – volume: 2 start-page: 1037 year: 2013 ident: 14020245_CR4 publication-title: Advanced Healthcare Materials doi: 10.1002/adhm.201200409 – volume: 5 start-page: 472 year: 2009 ident: 14020245_CR35 publication-title: Soft Matter doi: 10.1039/B812393D – start-page: 342 volume-title: IEEE International Conference on Mechatronics (ICM) year: 2011 ident: 14020245_CR29 – volume: 17 start-page: 405 year: 1990 ident: 14020245_CR8 publication-title: Medical Physics doi: 10.1118/1.596520 – volume-title: Applied Nonlinear Control year: 1991 ident: 14020245_CR51 – volume: 437 start-page: 862 year: 2005 ident: 14020245_CR31 publication-title: Nature doi: 10.1038/nature04090 – volume: 2 start-page: 27 year: 1995 ident: 14020245_CR49 publication-title: IEEE Robotics & Automation Magazine doi: 10.1109/100.388294 – volume-title: Introduction to Electrodynamics year: 1999 ident: 14020245_CR47 – start-page: 518 volume-title: IEEE International Conference on Ubiquitous Robots and Ambient Intelligence (URAI) year: 2015 ident: 14020245_CR43 – ident: 14020245_CR38 doi: 10.1103/PhysRevLett.99.178103 – volume: 6 start-page: 1311 year: 2006 ident: 14020245_CR25 publication-title: Nano Letters doi: 10.1021/nl052340u – ident: 14020245_CR33 doi: 10.1088/0960-1317/21/3/035001 – ident: 14020245_CR48 doi: 10.1063/1.4893695 – volume: 7 start-page: 8810 year: 2011 ident: 14020245_CR40 publication-title: Soft Matter doi: 10.1039/c1sm05960b |
SSID | ssj0059283 |
Score | 2.3244238 |
Snippet | Magnetic microswimmers are useful for navigating and performing tasks at small scales. To demonstrate effective control over such microswimmers, we implemented... |
SourceID | crossref springer elsevier chongqing |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 245 |
SubjectTerms | Artificial Intelligence Biochemical Engineering Bioinformatics Biomaterials Biomedical Engineering and Bioengineering Biomedical Engineering/Biotechnology chirality Engineering feedback control low Reynold number magnetic control microrobotics 不确定性 亥姆霍兹线圈 反馈控制器 实验数据 手性 机器人 游泳能力 运动学模型 |
Title | Feedback Control of an Achiral Robotic Microswimmer |
URI | http://lib.cqvip.com/qk/87903X/201702/671964792.html https://dx.doi.org/10.1016/S1672-6529(16)60395-5 https://link.springer.com/article/10.1016/S1672-6529(16)60395-5 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB4hEBIXVKAVWx7yoQc4hE0cP-LjasVq2woOPCRulu04sKJKaHerqhd-O57EWQRSQapySuRxos_jmYk98xngizQ5l64qkrIySKqd8cRaxxPngjJbL1lpsTj57FxMr9m3G36zAuO-FgbTKqPt72x6a63jk2FEc_gwmw0vMyGp4DT8b-RodLGIjzGJWn7yuEzz4Iq2VJzYOMHWz1U8XQ_tw6NMHIs0VzzhyLFw19S3P4Pn-JeverVn2rqiyQfYjDEkGXWfuQUrvt6G9e5Uyb_bsBXn65wcRVLp4x3IJ8FNWePuybhLTidNRUxNRu5uFlqQi8Y2oTtyhgl68z8zXM_-CNeT06vxNIkHJiSOUbpIyrRglirpMlVUqQnoiMJ5JqVXqcU9OV9JXkphs3ClRpWOlWFQmDFUWZ65_BOs1k3td4E4UzqvjEgLU7HKcpObKuXW2FyEGIb7AewtYdIPHTGGFhLpvaSiA2A9cNpFrnE88uKHXiaVIfYasdfhrsVe8wGcLMX6Pt8RKPpR0S-0RgeH8J7osB9FHaft_G2Jz___sj3YoBgOtKs3-7C6-PXbH4RgZmEPW209hLXR1-_T8ye6u-pj |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT-MwEB6xRavlsuIpCgv4wAEO2SaOH_GxqqjKoz3sgsTNsh1nqRYlQLta8e-xE6cIJEBCOcXyONE39szYHn8GOOQqpdwUWZQXypNqJzTS2tDIGNeZteUk1_5w8njCRlfk7JpeL8GgPQvj0yqD7W9sem2tQ0kvoNm7m057vxPGMaPYzTdSb3TFF1j27FS0A8v90_PRpDXIVOCajdPXj7zA80GeppG68ChhxyxOBY2op1m4qco_9855vOWuXm2b1t5ouArfQxiJ-s2frsGSLdfha3Ox5OM6rIUhO0NHgVf6eAPSofNUWpm_aNDkp6OqQKpEfXMzdTXQr0pXrjk09jl6s_9Tv6S9CVfDk8vBKAp3JkSGYDyP8jgjGgtuEpEVsXIAscxYwrkVsfbbcrbgNOdMJ-6JlcgNyZ1eiFJYaJqYdAs6ZVXabUBG5cYKxeJMFaTQVKWqiKlWOmUujKG2C7sLmORdw40hGfcMX1zgLpAWOGkC3bi_9eJWLvLKPPbSYy_dW429pF34uRBr2_xAIGu1Il90HOl8wkeivVaLMozc2fsSO5__2AF8G12OL-TF6eR8F1awjw7qxZwf0Jk__LN7LraZ6_3Qd58A38TtFA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Feedback+Control+of+an+Achiral+Robotic+Microswimmer&rft.jtitle=%E4%BB%BF%E7%94%9F%E5%B7%A5%E7%A8%8B%E5%AD%A6%E6%8A%A5%EF%BC%9A%E8%8B%B1%E6%96%87%E7%89%88&rft.au=U+Kei+Cheang+Hoyeon+Kim+Dejan+Milutinovic+Jongeun+Choi+Min+Jun+Kim&rft.date=2017-06-01&rft.issn=1672-6529&rft.eissn=2543-2141&rft.volume=14&rft.issue=2&rft.spage=245&rft.epage=259&rft_id=info:doi/10.1016%2FS1672-6529%2816%2960395-5&rft.externalDocID=671964792 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F87903X%2F87903X.jpg |