Feedback Control of an Achiral Robotic Microswimmer

Magnetic microswimmers are useful for navigating and performing tasks at small scales. To demonstrate effective control over such microswimmers, we implemented feedback control of the three-bead achiral microswimmers in both simulation and experiment. The achiral microswimmers with the ability to sw...

Full description

Saved in:
Bibliographic Details
Published inJournal of bionics engineering Vol. 14; no. 2; pp. 245 - 259
Main Authors Kei Cheang, U, Kim, Hoyeon, Milutinović, Dejan, Choi, Jongeun, Kim, Min Jun
Format Journal Article
LanguageEnglish
Published Singapore Elsevier Ltd 01.06.2017
Springer Singapore
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Magnetic microswimmers are useful for navigating and performing tasks at small scales. To demonstrate effective control over such microswimmers, we implemented feedback control of the three-bead achiral microswimmers in both simulation and experiment. The achiral microswimmers with the ability to swim in bulk fluid are controlled wirelessly using magnetic fields generated from electromagnetic coils. The achirality of the microswimmers introduces unknown handedness resulting in uncertainty in swimming direction. We use a combination of rotating and static magnetic fields generated from an approximate Helmholtz coil system to overcome such uncertainty. There are also movement uncertainties due to environmental factors such as unsteady flow conditions. A kinematic model based feedback controller was created based on data fitting of experimental data. However, the controller was unable to yield satisfactory performance due to uncertainties from environmental factors; i.e., the time to reach target pose under adverse flow condition is too long. Following the implementation of an integral controller to control the microswimmers' swimming velocity, the mieroswimmers were able to reach the target in roughly half the time. Through simulation and experiments, we show that the feedback control law can move an achiral microswimmer from any initial conditions to a target pose.
Bibliography:22-1355/TB
microrobotics, magnetic control, low Reynold number, chirality, feedback control
Magnetic microswimmers are useful for navigating and performing tasks at small scales. To demonstrate effective control over such microswimmers, we implemented feedback control of the three-bead achiral microswimmers in both simulation and experiment. The achiral microswimmers with the ability to swim in bulk fluid are controlled wirelessly using magnetic fields generated from electromagnetic coils. The achirality of the microswimmers introduces unknown handedness resulting in uncertainty in swimming direction. We use a combination of rotating and static magnetic fields generated from an approximate Helmholtz coil system to overcome such uncertainty. There are also movement uncertainties due to environmental factors such as unsteady flow conditions. A kinematic model based feedback controller was created based on data fitting of experimental data. However, the controller was unable to yield satisfactory performance due to uncertainties from environmental factors; i.e., the time to reach target pose under adverse flow condition is too long. Following the implementation of an integral controller to control the microswimmers' swimming velocity, the mieroswimmers were able to reach the target in roughly half the time. Through simulation and experiments, we show that the feedback control law can move an achiral microswimmer from any initial conditions to a target pose.
ISSN:1672-6529
2543-2141
DOI:10.1016/S1672-6529(16)60395-5