Specific Antileukemic Activity of PD0332991, a CDK4/6 Inhibitor, against Philadelphia Chromosome-Positive Lymphoid Leukemia
S-phase progression of the cell cycle is accelerated in tumors through various genetic abnormalities, and, thus, pharmacologic inhibition of altered cell-cycle progression would be an effective strategy to control tumors. In the current study, we analyzed the antileukemic activity of three available...
Saved in:
Published in | Molecular cancer therapeutics Vol. 15; no. 1; pp. 94 - 105 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
01.01.2016
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | S-phase progression of the cell cycle is accelerated in tumors through various genetic abnormalities, and, thus, pharmacologic inhibition of altered cell-cycle progression would be an effective strategy to control tumors. In the current study, we analyzed the antileukemic activity of three available small molecules targeting CDK4/CDK6 against lymphoid crisis of chronic myeloid leukemia (CML-LC) and Philadelphia chromosome-positive acute lymphoblastic leukemia (Ph(+) ALL), and found that all three molecules showed specific activities against leukemic cell lines derived from CML-LC and Ph(+) ALL. In particular, PD0332991 exhibited extremely high antileukemic activity against CML-LC and Ph(+) ALL cell lines in the nanomolar range by the induction of G0-G1 arrest and partially cell death through dephosphorylation of pRb and downregulation of the genes that are involved in S-phase transition. As an underlying mechanism for favorable sensitivity to the small molecules targeting CDK4/CDK6, cell-cycle progression of Ph(+) lymphoid leukemia cells was regulated by transcriptional and posttranscriptional modulation of CDK4 as well as Cyclin D2 gene expression under the control of BCR-ABL probably through the PI3K pathway. Consistently, the gene expression level of Cyclin D2 in Ph(+) lymphoid leukemia cells was significantly higher than that in Ph(-) lymphoid leukemia cells. Of note, three Ph(+) ALL cell lines having the T315I mutation also showed sensitivity to PD0332991. In a xenograft model, PD0332991, but not imatinib, suppressed dissemination of Ph(+) ALL having the T315I mutation and prolonged survival, demonstrating that this reagent would be a new therapeutic modality for relapsed CML-LC and Ph(+) ALL patients after treatment with tyrosine kinase inhibitors. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1535-7163 1538-8514 |
DOI: | 10.1158/1535-7163.mct-14-1065 |