Synaptic mediation from cutaneous mechanical nociceptors

1. Responses of dorsal horn neurons to cutaneous mechanical stimulation were studied in an in vitro preparation of hamster spinal cord with partially intact innervation from an isolated patch of hairy skin. Stable extracellular and intracellular recordings were obtained from cells with different mec...

Full description

Saved in:
Bibliographic Details
Published inJournal of neurophysiology Vol. 72; no. 2; p. 612
Main Authors Schneider, S P, Perl, E R
Format Journal Article
LanguageEnglish
Published United States 01.08.1994
Subjects
Online AccessGet more information

Cover

Loading…
More Information
Summary:1. Responses of dorsal horn neurons to cutaneous mechanical stimulation were studied in an in vitro preparation of hamster spinal cord with partially intact innervation from an isolated patch of hairy skin. Stable extracellular and intracellular recordings were obtained from cells with different mechanoreceptive properties similar to those reported for other species in vivo. Analyses were made of the intracellular responses of 25 dorsal horn neurons activated selectively by mechanical stimulation to the skin patch. 2. Bath application of the broad spectrum, excitatory amino acid (EAA) receptor antagonist, kynurenic acid (1 mM) blocked excitation of 7 of 8 high-threshold mechanoreceptive units by either cutaneous nerve volleys or mechanical stimulation of the skin. This concentration of kynurenic acid suppressed peripherally evoked responses in 8 of 14 neurons responsive to innocuous mechanical stimuli. 3. High-threshold mechanoreceptive neurons of the superficial dorsal horn exhibited one of three distinctive patterns of postsynaptic potentials in response to electrical stimulation of cutaneous afferent fibers: 1) a simple fast excitatory postsynaptic potential (EPSP), 2) a fast EPSP with a prolonged decay phase lasting between 100 and 1,000 ms, and 3) a multiphasic response dissociable on the basis of stimulus strength consisting of a fast EPSP followed by a hyperpolarizing inhibitory postsynaptic potential (IPSP) (duration 80-100 ms). Gentle mechanical stimuli initiated inhibition from areas adjacent to the high-threshold mechanically excitatory field; this suggests that membrane hyperpolarization in these neurons was evoked by input from low-threshold mechanoreceptors. 4. Bath application of 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX, 10 microM), a competitive EAA antagonist selective for non-N-methyl-D-aspartate (non-NMDA) receptor subtypes, substantially or completely (56-100%) suppressed EPSPs evoked from cutaneous afferent fibers in high-threshold mechanoreceptive neurons. CNQX also decreased the membrane depolarization, the frequency of EPSPs, and the frequency of action potentials evoked by mechanical stimulation of the receptive field. 5. CNQX (10 microM) or kynurenic acid (1 mM) had considerably weaker effects on IPSPs than on EPSPs evoked from the periphery in superficial dorsal horn neurons. IPSP amplitudes were unchanged by these agents in some neurons and decreased by only 20-25% in others. 6. We conclude that L-glutamate acting on non-NMDA receptors mediates fast synaptic excitation of superficial dorsal horn neurons from peripheral mechanical nociceptors with myelinated fibers. Furthermore, the observations imply either an agent other than L-glutamate or one acting at different membrane receptors is a synaptic mediator for other peripheral afferent units including some activated by innocuous mechanical stimuli.
ISSN:0022-3077
DOI:10.1152/jn.1994.72.2.612