HMGB1 bound to cisplatin-DNA adducts undergoes extensive acetylation and phosphorylation in vivo

Cisplatin, one of the most effective anticancer drugs, is a DNA-damaging agent that induces cell death primarily by apoptosis. For many years, HMGB1 has been known to be a recognition protein for cisplatin-DNA lesions. Here, an application of a biomolecular probe based on a peptide-oligonucleotide c...

Full description

Saved in:
Bibliographic Details
Published inChemical science (Cambridge) Vol. 6; no. 3; pp. 2074 - 2078
Main Authors He, Yafeng, Ding, Yin, Wang, Dan, Zhang, Wanjun, Chen, Weizhong, Liu, Xichun, Qin, Weijie, Qian, Xiaohong, Chen, Hao, Guo, Zijian
Format Journal Article
LanguageEnglish
Published England 01.03.2015
Online AccessGet full text

Cover

Loading…
More Information
Summary:Cisplatin, one of the most effective anticancer drugs, is a DNA-damaging agent that induces cell death primarily by apoptosis. For many years, HMGB1 has been known to be a recognition protein for cisplatin-DNA lesions. Here, an application of a biomolecular probe based on a peptide-oligonucleotide conjugate is presented as a novel method for investigating this recognition process . Proteins known to be involved in the recognition of cisplatin-damaged DNA were pulled down and identified, including members of the HMGB family and a number of other proteins. Interestingly, at least 4 subforms of HMGB1 bind to cisplatin-DNA adducts. These proteins were further identified as post-translationally acetylated or phosphorylated forms of HMGB1. These results provide a rich pool of protein candidates whose roles in the mechanism of action of platinum drugs should be explored. These newly discovered molecular components of the DNA damage signalling cascade could serve as novel links between the initial cell responses to DNA damage and the downstream apoptotic or DNA repair pathways.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2041-6520
2041-6539
DOI:10.1039/c4sc03650f