Compressive strength of nano concrete materials under elevated temperatures using machine learning
In this study, four Artificial intelligence (AI) - based machine learning models were developed to estimate the Residual compressive strength (RCS) value of concrete supported with nano additives of Nanocarbon tubes (NCTs) and Nano alumina (NAl), after exposure to elevated temperatures ranging from...
Saved in:
Published in | Scientific reports Vol. 14; no. 1; pp. 24246 - 32 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
16.10.2024
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | In this study, four Artificial intelligence (AI) - based machine learning models were developed to estimate the Residual compressive strength (RCS) value of concrete supported with nano additives of Nanocarbon tubes (NCTs) and Nano alumina (NAl), after exposure to elevated temperatures ranging from 200 to 800 degrees. These models were developed via adapting meta- heuristic models including the Water cycle algorithm (WCA), Genetic algorithm (GA), and classical AI models of Artificial neural networks (ANNs), Fuzzy logic models (FLM), in addition to the statistical method of Multiple linear regression (MLR). 156 post heating experimental results available as a literature data (represents four input parameters of temperature change, heat exposure duration, nanomaterial type, and replacement proportion) are used to achieve the study’s objective. Results of the developed models demonstrated that ANN and FLM have strong potential in predicting RCS. However, it is often infeasible to generate practical equations that relate input and output variables from these models. Upon analysing the results of the WCA and GA, it was found that WCA yielded the most accurate predictions based on all performance indicators. Furthermore, RCS prediction equations with superior accuracy were derived utilizing the meta-heuristic AI models of WCA and GA, with Mean absolute errors (MAEs) of 3.09 kg/cm² and 3.53 kg/cm² for the training, 1.91 kg/cm² and 2.72 kg/cm² for the validation, and 1.91 kg/cm² and 2.72 kg/cm² for the testing data sets, respectively. Additionally, sensitivity analysis via neural networks weights and SHAP investigation were performed to reveals the impact and relationship of the input variables with the output variables. Both techniques reveal that temperature degree and time of exposure had the highest positive impact on RCS value, followed by NAl and NCTs, in order. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 2045-2322 2045-2322 |
DOI: | 10.1038/s41598-024-73713-0 |