Inhibition of TRAF3 expression alleviates cardiac ischemia reperfusion (IR) injury: A mechanism involving in apoptosis, inflammation and oxidative stress

Ischemia reperfusion (IR) injury is known as a major issue in cardiac transplantation and various pathogenesis are involved in myocardial IR injury. Here, we show that tumor necrosis factor receptor-associated factor 3 (TRAF3) was increased in hearts of mice with cardiac IR injury and in cardiomyocy...

Full description

Saved in:
Bibliographic Details
Published inBiochemical and biophysical research communications Vol. 506; no. 1; pp. 298 - 305
Main Authors Liu, Xiuli, Zhang, Lu, Qin, Huaxin, Han, Xia, Zhang, Zhiqiang, Zhang, Zengtang, Qin, Sheng-Ying, Niu, Jiamin
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 17.11.2018
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Ischemia reperfusion (IR) injury is known as a major issue in cardiac transplantation and various pathogenesis are involved in myocardial IR injury. Here, we show that tumor necrosis factor receptor-associated factor 3 (TRAF3) was increased in hearts of mice with cardiac IR injury and in cardiomyocytes incubated with lipopolysaccharide (LPS) and H2O2. Reducing TRAF3 expression in vivo markedly reduced the infacrted area, attenuated the histological changes, improved cardiac dysfunction and injury in mice subjected to IR injury. Functional study further indicated that TRAF3 knockdown inhibited apoptosis in murine hearts of mice with cardiac IR injury and in LPS and H2O2-cotreated cardiomyocytes, as evidenced by the decreased expression of cleaved Caspase-3 and poly (ADP-ribose) polymerases (PARP). In addition, inflammatory response and oxidative stress observed in hearts of mice with IR operation were significantly alleviated by TRAF3 knockdown through inhibiting nuclear factor-κB (NF-κB) and xanthine oxidase (XO) signaling pathways, and similar results were detected in LPS and H2O2-cotreated cardiomyocytes in vitro. Moreover, the loss of TRAF3 also restrained the phosphorylated c-Jun N-terminal protein kinase (JNK) activation following cardiac IR injury. Importantly, blocking JNK activation, as TRAF3 knockdown, greatly reduced apoptosis, inflammation and reactive oxygen species (ROS) production in LPS and H2O2-cotreated cardiomyocytes. In contrast, TRAF3 knockdown-reduced apoptosis, inflammatory response and oxidative stress were significantly rescued by promoting JNK activity in LPS and H2O2-cotreated cardiomyocytes. In summary, the results of our study indicated that repressing TRAF3 expression could be served as essential therapeutic target for protection against cardiac IR injury through restraining JNK-meditated apoptosis, inflammation and the production of ROS. •Repressing TRAF3 expressions inhibits cardiac apoptosis in mice after IR injury.•TRAF3 inhibition suppresses inflammation and oxidative stress in hearts of mice subjected to IR.•TRAF3-regulated apoptosis, inflammation and oxidative stress is meditated by JNK activation in hearts of mice with IR injury.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0006-291X
1090-2104
DOI:10.1016/j.bbrc.2018.10.058