Dense object detection methods in RAW UAV imagery based on YOLOv8
Accurate, fast and lightweight dense target detection methods are highly important for precision agriculture. To detect dense apricot flowers using drones, we propose an improved dense target detection method based on YOLOv8, named D-YOLOv8. First, we introduce the Dense Feature Pyramid Networks (D-...
Saved in:
Published in | Scientific reports Vol. 14; no. 1; pp. 18019 - 23 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
04.08.2024
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Accurate, fast and lightweight dense target detection methods are highly important for precision agriculture. To detect dense apricot flowers using drones, we propose an improved dense target detection method based on YOLOv8, named D-YOLOv8. First, we introduce the Dense Feature Pyramid Networks (D-FPN) to enhance the model’s ability to extract dense features and Dense Attention Layer (DAL) to focus on dense target areas, which enhances the feature extraction ability of dense areas, suppresses features in irrelevant areas, and improves dense target detection accuracy. Finally, RAW data are used to enhance the dataset, which introduces additional original data into RAW images, further enriching the feature input of dense objects. We perform validation on the CARPK challenge dataset and constructed a dataset. The experimental results show that our proposed D-YOLOv8m achieved 98.37% AP, while the model parameters were only 13.2 million. The improved network can effectively support any task of dense target detection. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 2045-2322 2045-2322 |
DOI: | 10.1038/s41598-024-69106-y |