Nucleus pulposus cell network modelling in the intervertebral disc
Intervertebral disc degeneration (IDD) results from an imbalance between anabolic and catabolic processes in the extracellular matrix (ECM). Due to complex biochemical interactions, a comprehensive understanding is needed. This study presents a regulatory network model (RNM) for nucleus pulposus cel...
Saved in:
Published in | NPJ systems biology and applications Vol. 11; no. 1; pp. 13 - 17 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
31.01.2025
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Intervertebral disc degeneration (IDD) results from an imbalance between anabolic and catabolic processes in the extracellular matrix (ECM). Due to complex biochemical interactions, a comprehensive understanding is needed. This study presents a regulatory network model (RNM) for nucleus pulposus cells (NPC), representing normal intervertebral disc (IVD) conditions. The RNM includes 33 proteins, and 153 interactions based on literature, incorporating key NPC regulatory mechanisms. A semi-quantitative approach calculates the basal steady state, accurately reflecting normal NPC activity. Model validation through published studies replicated pro-catabolic and pro-anabolic shifts, emphasizing the roles of transforming growth factor beta (TGF-β) and interleukin-1 receptor antagonist (IL-1Ra) in ECM regulation. This IVD RNM is a valuable tool for predicting IDD progression, offering insights into ECM degradation mechanisms and guiding experimental research on IVD health and degeneration. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ISSN: | 2056-7189 2056-7189 |
DOI: | 10.1038/s41540-024-00479-6 |