Nonsense-mediated mRNA decay of collagen -emerging complexity in RNA surveillance mechanisms
Nonsense-mediated mRNA decay (NMD) is an evolutionarily conserved mRNA surveillance system that degrades mRNA transcripts that harbour a premature translation-termination codon (PTC), thus reducing the synthesis of truncated proteins that would otherwise have deleterious effects. Although extensive...
Saved in:
Published in | Journal of cell science Vol. 126; no. Pt 12; pp. 2551 - 2560 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
England
15.06.2013
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Nonsense-mediated mRNA decay (NMD) is an evolutionarily conserved mRNA surveillance system that degrades mRNA transcripts that harbour a premature translation-termination codon (PTC), thus reducing the synthesis of truncated proteins that would otherwise have deleterious effects. Although extensive research has identified a conserved repertoire of NMD factors, these studies have been performed with a restricted set of genes and gene constructs with relatively few exons. As a consequence, NMD mechanisms are poorly understood for genes with large 3' terminal exons, and the applicability of the current models to large multi-exon genes is not clear. In this Commentary, we present an overview of the current understanding of NMD and discuss how analysis of nonsense mutations in the collagen gene family has provided new mechanistic insights into this process. Although NMD of the collagen genes with numerous small exons is consistent with the widely accepted exon-junction complex (EJC)-dependent model, the degradation of Col10a1 transcripts with nonsense mutations cannot be explained by any of the current NMD models. Col10a1 NMD might represent a fail-safe mechanism for genes that have large 3' terminal exons. Defining the mechanistic complexity of NMD is important to allow us to understand the pathophysiology of the numerous genetic disorders caused by PTC mutations. |
---|---|
Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-3 content type line 23 ObjectType-Review-1 ObjectType-Article-1 ObjectType-Feature-2 |
ISSN: | 0021-9533 1477-9137 |
DOI: | 10.1242/jcs.120220 |