Indium hydroxide to bixbyite-type indium oxide transition probed in situ by time resolved synchrotron radiation

The understanding of the transformation mechanism involved in the dehydroxylation reactions in the In-O-H system exhibits large controversy and discrepancy; it holds especially for the formation of the metastable nanosized intermediates as well as for the structural relation between corresponding ph...

Full description

Saved in:
Bibliographic Details
Published inNanotechnology Vol. 20; no. 49; p. 495702
Main Authors Schlicker, L, Riedel, R, Gurlo, A
Format Journal Article
LanguageEnglish
Published England IOP Publishing 09.12.2009
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The understanding of the transformation mechanism involved in the dehydroxylation reactions in the In-O-H system exhibits large controversy and discrepancy; it holds especially for the formation of the metastable nanosized intermediates as well as for the structural relation between corresponding phases. It was recently reported that indium oxohydroxide (InOOH) appears as an intermediate phase in the thermal dehydroxylation of nanoscaled In(OH)(3). Our in situ time resolved high energy synchrotron radiation experiments showed unambiguously that no intermediate crystalline or amorphous phases have been observed during the phase transition (dehydroxylation) from nanosized indium hydroxide to indium oxide. Under our experimental conditions, the c-In(OH)(3) to bixbyite-type In(2)O(3) transition was observed between 280 and 305 degrees C and the conversion completed around 305 degrees C without any observable intermediates. The formation of InOOH during the phase transition In(OH)(3)-->bixbyite-type In(2)O(3) can be ruled out. This finding is of high relevance and importance for the controllable synthesis of nanocrystalline In(2)O(3)-based materials.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
ISSN:0957-4484
1361-6528
DOI:10.1088/0957-4484/20/49/495702