Tropical Cyclone Outflow and Warm Core Structure as Revealed by HS3 Dropsonde Data

Abstract Dropsonde data collected during the NASA Hurricane and Severe Storm Sentinel (HS3) field campaign from 16 research missions spanning 6 tropical cyclones (TCs) are investigated, with an emphasis on TC outflow and the warm core. The Global Hawk (GH) AV-6 aircraft provided a unique opportunity...

Full description

Saved in:
Bibliographic Details
Published inMonthly weather review Vol. 145; no. 4; pp. 1339 - 1359
Main Authors Komaromi, William A., Doyle, James D.
Format Journal Article
LanguageEnglish
Published Washington American Meteorological Society 01.04.2017
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Abstract Dropsonde data collected during the NASA Hurricane and Severe Storm Sentinel (HS3) field campaign from 16 research missions spanning 6 tropical cyclones (TCs) are investigated, with an emphasis on TC outflow and the warm core. The Global Hawk (GH) AV-6 aircraft provided a unique opportunity to investigate the outflow characteristics due to a combination of 18+-h flight durations and the ability to release dropsondes from high altitudes above 100 hPa. Intensifying TCs are found to be associated with stronger upper-level divergence and radial outflow relative to nonintensifying TCs in the sample, regardless of current intensity. A layer of 2–4 m s−1 inflow 20–50 hPa deep is also observed 50–100 hPa above the maximum outflow layer, which appears to be associated with lower-stratospheric descent above the eye. The potential temperature of the outflow is found to be more strongly correlated with the equivalent potential temperature of the boundary layer inflow than to the present storm intensity, consistent with the outflow temperature having a stronger relationship with potential intensity than actual intensity. Finally, the outflow originates from a region of low inertial stability that extends above the cyclone from 300 to 150 hPa and from 50- to 200-km radius. The unique nature of this dataset allows the height and structure of the warm core also to be investigated. The magnitude of the warm core was found to be positively correlated with TC intensity, while the height of the warm core was weakly positively correlated with intensity. Finally, neither the height nor magnitude of the warm core exhibits any meaningful relationship with intensity change.
ISSN:0027-0644
1520-0493
DOI:10.1175/MWR-D-16-0172.1