DIBR-Synthesized Image Quality Assessment With Texture and Depth Information
Accurately predicting the quality of depth-image-based-rendering (DIBR) synthesized images is of great significance in promoting DIBR techniques. Recently, many DIBR-synthesized image quality assessment (IQA) algorithms have been proposed to quantify the distortion that existed in texture images. Ho...
Saved in:
Published in | Frontiers in neuroscience Vol. 15; p. 761610 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Lausanne
Frontiers Research Foundation
03.11.2021
Frontiers Media S.A |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Accurately predicting the quality of depth-image-based-rendering (DIBR) synthesized images is of great significance in promoting DIBR techniques. Recently, many DIBR-synthesized image quality assessment (IQA) algorithms have been proposed to quantify the distortion that existed in texture images. However, these methods ignore the damage of DIBR algorithms on the depth structure of DIBR-synthesized images and thus fail to accurately evaluate the visual quality of DIBR-synthesized images. To this end, this paper presents a DIBR-synthesized image quality assessment metric with Texture and Depth Information, dubbed as TDI. TDI predicts the quality of DIBR-synthesized images by jointly measuring the synthesized image's colorfulness, texture structure, and depth structure. The design principle of our TDI includes two points: (1) DIBR technologies bring color deviation to DIBR-synthesized images, and so measuring colorfulness can effectively predict the quality of DIBR-synthesized images. (2) In the hole-filling process, DIBR technologies introduce the local geometric distortion, which destroys the texture structure of DIBR-synthesized images and affects the relationship between the foreground and background of DIBR-synthesized images. Thus, we can accurately evaluate DIBR-synthesized image quality through a joint representation of texture and depth structures. Experiments show that our TDI outperforms the competing state-of-the-art algorithms in predicting the visual quality of DIBR-synthesized images. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Edited by: Ke Gu, Beijing University of Technology, China Reviewed by: Guanghui Yue, Shenzhen University, China; Suiyi Ling, XIaomi Inc., France; Wei Sun, Shanghai Jiao Tong University, China This article was submitted to Perception SciencePerception Science, a section of the journal Frontiers in Neuroscience |
ISSN: | 1662-453X 1662-4548 1662-453X |
DOI: | 10.3389/fnins.2021.761610 |