Rare but impaired flavin-containing monooxygenase 3 (FMO3) variants reported in a recently updated Japanese mega-databank of genome resources
Genetic variants of human flavin-containing monooxygenase 3 (FMO3) were investigated using an updated Japanese population panel containing 54,000 subjects (the previous panel contained 38,000 subjects). One stop codon mutation and six amino acid-substituted FMO3 variants were newly identified in the...
Saved in:
Published in | Drug metabolism and pharmacokinetics Vol. 55; p. 100539 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier Ltd
01.04.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Genetic variants of human flavin-containing monooxygenase 3 (FMO3) were investigated using an updated Japanese population panel containing 54,000 subjects (the previous panel contained 38,000 subjects). One stop codon mutation and six amino acid-substituted FMO3 variants were newly identified in the updated databank. Of these, two substituted variants (p.Thr329Ala and p.Arg492Trp) were previously identified in compound haplotypes with p.[(Glu158Lys; Glu308Gly)] and were associated with the metabolic disorder trimethylaminuria. Three recombinant FMO3 protein variants (p.Ser137Leu, p.Ala334Val, and p.Ile426Val) expressed in bacterial membranes had similar activities toward trimethylamine N-oxygenation (∼75–125 %) as wild-type FMO3 (117 min−1); however, the recombinant novel FMO3 variant Phe313Ile showed moderately decreased FMO3 catalytic activity (∼20 % of wild-type). Because of the known deleterious effects of FMO3 C-terminal stop codons, the novel truncated FMO3 Gly184Ter variant was suspected to be inactive. To easily identify the four impaired FMO3 variants (one stop codon mutation and three amino-acid substitutions) in the clinical setting, simple confirmation methods for these FMO3 variants are proposed using polymerase chain reaction/restriction fragment length polymorphism or allele-specific PCR methods. The updated whole-genome sequence data and kinetic analyses revealed that four of the seven single-nucleotide nonsense or missense FMO3 variants had moderately or severely impaired activity toward trimethylamine N-oxygenation.
[Display omitted] |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1347-4367 1880-0920 1880-0920 |
DOI: | 10.1016/j.dmpk.2023.100539 |