On mutual information, likelihood ratios, and estimation error for the additive Gaussian channel

This paper considers the model of an arbitrarily distributed signal x observed through an added independent white Gaussian noise w, y=x+w. New relations between the minimal mean-square error of the noncausal estimator and the likelihood ratio between y and w are derived. This is followed by an exten...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on information theory Vol. 51; no. 9; pp. 3017 - 3024
Main Author Zakai, M.
Format Journal Article
LanguageEnglish
Published New York, NY IEEE 01.09.2005
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:This paper considers the model of an arbitrarily distributed signal x observed through an added independent white Gaussian noise w, y=x+w. New relations between the minimal mean-square error of the noncausal estimator and the likelihood ratio between y and w are derived. This is followed by an extended version of a recently derived relation between the mutual information I(x;y) and the minimal mean-square error. These results are applied to derive infinite-dimensional versions of the Fisher information and the de Bruijn identity. A comparison between the causal and noncausal estimation errors yields a restricted form of the logarithmic Sobolev inequality. The derivation of the results is based on the Malliavin calculus
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0018-9448
1557-9654
DOI:10.1109/TIT.2005.853297