The effects of protein corona on in vivo fate of nanocarriers
The nanoparticles interact with the biomaterials in biological fluids, resulting in protein corona formation that may influence their properties and in vivo fate. The design strategies of drug delivery systems have been expanded due to the better understanding of protein corona composition and the i...
Saved in:
Published in | Advanced drug delivery reviews Vol. 186; p. 114356 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
01.07.2022
|
Subjects | |
Online Access | Get full text |
ISSN | 0169-409X 1872-8294 1872-8294 |
DOI | 10.1016/j.addr.2022.114356 |
Cover
Loading…
Abstract | The nanoparticles interact with the biomaterials in biological fluids, resulting in protein corona formation that may influence their properties and in vivo fate. The design strategies of drug delivery systems have been expanded due to the better understanding of protein corona composition and the interaction between nanoparticles and proteins.
[Display omitted]
With the emerging advances in utilizing nanocarriers for biomedical applications, a molecular-level understanding of the in vivo fate of nanocarriers is necessary. After administration into human fluids, nanocarriers can attract proteins onto their surfaces, forming an assembled adsorption layer called protein corona (PC). The formed PC can influence the physicochemical properties and subsequently determine nanocarriers' biological behaviors. Therefore, an in-depth understanding of the features and effects of the PC on the nanocarriers’ surface is the first and most important step towards controlling their in vivo fate. This review introduces fundamental knowledge such as the definition, formation, composition, conformation, and characterization of the PC, emphasizing the in vivo environmental factors that control the PC formation. The effect of PC on the physicochemical properties and thus biological behaviors of nanocarriers was then presented and thoroughly discussed. Finally, we proposed the design strategies available for engineering PC onto nanocarriers to manipulate them with the desired surface properties and achieve the best biomedical outcomes. |
---|---|
AbstractList | The nanoparticles interact with the biomaterials in biological fluids, resulting in protein corona formation that may influence their properties and in vivo fate. The design strategies of drug delivery systems have been expanded due to the better understanding of protein corona composition and the interaction between nanoparticles and proteins.
[Display omitted]
With the emerging advances in utilizing nanocarriers for biomedical applications, a molecular-level understanding of the in vivo fate of nanocarriers is necessary. After administration into human fluids, nanocarriers can attract proteins onto their surfaces, forming an assembled adsorption layer called protein corona (PC). The formed PC can influence the physicochemical properties and subsequently determine nanocarriers' biological behaviors. Therefore, an in-depth understanding of the features and effects of the PC on the nanocarriers’ surface is the first and most important step towards controlling their in vivo fate. This review introduces fundamental knowledge such as the definition, formation, composition, conformation, and characterization of the PC, emphasizing the in vivo environmental factors that control the PC formation. The effect of PC on the physicochemical properties and thus biological behaviors of nanocarriers was then presented and thoroughly discussed. Finally, we proposed the design strategies available for engineering PC onto nanocarriers to manipulate them with the desired surface properties and achieve the best biomedical outcomes. With the emerging advances in utilizing nanocarriers for biomedical applications, a molecular-level understanding of the in vivo fate of nanocarriers is necessary. After administration into human fluids, nanocarriers can attract proteins onto their surfaces, forming an assembled adsorption layer called protein corona (PC). The formed PC can influence the physicochemical properties and subsequently determine nanocarriers' biological behaviors. Therefore, an in-depth understanding of the features and effects of the PC on the nanocarriers' surface is the first and most important step towards controlling their in vivo fate. This review introduces fundamental knowledge such as the definition, formation, composition, conformation, and characterization of the PC, emphasizing the in vivo environmental factors that control the PC formation. The effect of PC on the physicochemical properties and thus biological behaviors of nanocarriers was then presented and thoroughly discussed. Finally, we proposed the design strategies available for engineering PC onto nanocarriers to manipulate them with the desired surface properties and achieve the best biomedical outcomes. With the emerging advances in utilizing nanocarriers for biomedical applications, a molecular-level understanding of the in vivo fate of nanocarriers is necessary. After administration into human fluids, nanocarriers can attract proteins onto their surfaces, forming an assembled adsorption layer called protein corona (PC). The formed PC can influence the physicochemical properties and subsequently determine nanocarriers' biological behaviors. Therefore, an in-depth understanding of the features and effects of the PC on the nanocarriers' surface is the first and most important step towards controlling their in vivo fate. This review introduces fundamental knowledge such as the definition, formation, composition, conformation, and characterization of the PC, emphasizing the in vivo environmental factors that control the PC formation. The effect of PC on the physicochemical properties and thus biological behaviors of nanocarriers was then presented and thoroughly discussed. Finally, we proposed the design strategies available for engineering PC onto nanocarriers to manipulate them with the desired surface properties and achieve the best biomedical outcomes.With the emerging advances in utilizing nanocarriers for biomedical applications, a molecular-level understanding of the in vivo fate of nanocarriers is necessary. After administration into human fluids, nanocarriers can attract proteins onto their surfaces, forming an assembled adsorption layer called protein corona (PC). The formed PC can influence the physicochemical properties and subsequently determine nanocarriers' biological behaviors. Therefore, an in-depth understanding of the features and effects of the PC on the nanocarriers' surface is the first and most important step towards controlling their in vivo fate. This review introduces fundamental knowledge such as the definition, formation, composition, conformation, and characterization of the PC, emphasizing the in vivo environmental factors that control the PC formation. The effect of PC on the physicochemical properties and thus biological behaviors of nanocarriers was then presented and thoroughly discussed. Finally, we proposed the design strategies available for engineering PC onto nanocarriers to manipulate them with the desired surface properties and achieve the best biomedical outcomes. |
ArticleNumber | 114356 |
Author | Xiao, Qingqing Qiu, Min Li, Xiaotong Zoulikha, Makhloufi Teng, Chao Xu, Qiaobing He, Wei Lin, Chenshi Sallam, Marwa A. |
Author_xml | – sequence: 1 givenname: Qingqing surname: Xiao fullname: Xiao, Qingqing organization: School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China – sequence: 2 givenname: Makhloufi surname: Zoulikha fullname: Zoulikha, Makhloufi organization: School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China – sequence: 3 givenname: Min surname: Qiu fullname: Qiu, Min organization: Department of Biomedical Engineering, Tufts University, Medford 02155, USA – sequence: 4 givenname: Chao surname: Teng fullname: Teng, Chao organization: School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China – sequence: 5 givenname: Chenshi surname: Lin fullname: Lin, Chenshi organization: School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China – sequence: 6 givenname: Xiaotong surname: Li fullname: Li, Xiaotong organization: School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China – sequence: 7 givenname: Marwa A. surname: Sallam fullname: Sallam, Marwa A. organization: Department of Industrial Pharmacy, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt – sequence: 8 givenname: Qiaobing surname: Xu fullname: Xu, Qiaobing email: qiaobing.xu@tufts.edu organization: Department of Biomedical Engineering, Tufts University, Medford 02155, USA – sequence: 9 givenname: Wei surname: He fullname: He, Wei email: weihe@cpu.edu.cn organization: School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35595022$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kMtKAzEUQINU7EN_wIXM0s3UJNNJJqALKb6g4KaCu5BJbjClTWoyLfj3pozduOgqXDjncnPGaOCDB4SuCZ4STNjdaqqMiVOKKZ0SMqtqdoZGpOG0bKiYDdAoQ6KcYfE5ROOUVhgTyhm-QMOqrkWdtRF6WH5BAdaC7lIRbLGNoQPnCx1i8KoIvsjD3u1DYVUHB8IrH7SK0UFMl-jcqnWCq793gj6en5bz13Lx_vI2f1yUekZpV1JQohG4ZsbyllpWcSMMNq1VhAgBoIWlHFrGcI1NU2srKm01MLCCYsxNNUG3_d583vcOUic3LmlYr5WHsEuSMsZ5wzghGb35Q3ftBozcRrdR8Ucev5yBpgd0DClFsFK7TnUu-C4qt5YEy0NduZKHuvJQV_Z1s0r_qcftJ6X7XoIcaJ-ryaQdeA3GxVxdmuBO6b8-yJIt |
CitedBy_id | crossref_primary_10_1021_acs_jpclett_3c01751 crossref_primary_10_3390_ijms25063261 crossref_primary_10_1021_acsami_4c00014 crossref_primary_10_1021_acsabm_4c00316 crossref_primary_10_1021_acsami_4c16685 crossref_primary_10_1016_j_apsb_2022_11_026 crossref_primary_10_1039_D2CS00497F crossref_primary_10_1039_D4TB01124D crossref_primary_10_1002_adhm_202402954 crossref_primary_10_1021_acs_langmuir_4c01642 crossref_primary_10_1016_j_addr_2023_115116 crossref_primary_10_1016_j_xphs_2024_09_015 crossref_primary_10_1038_s41467_025_56223_z crossref_primary_10_1002_smll_202412612 crossref_primary_10_1016_j_nano_2023_102665 crossref_primary_10_1016_j_jconrel_2023_10_023 crossref_primary_10_1016_j_addr_2023_115114 crossref_primary_10_3390_ma16145082 crossref_primary_10_1002_jsfa_13784 crossref_primary_10_1016_j_ijbiomac_2024_131546 crossref_primary_10_1016_j_xcrp_2023_101453 crossref_primary_10_1080_17435889_2025_2460962 crossref_primary_10_1186_s12951_024_02463_y crossref_primary_10_1016_j_ijbiomac_2024_138581 crossref_primary_10_1021_acs_nanolett_4c04429 crossref_primary_10_1016_j_jconrel_2025_113595 crossref_primary_10_3390_nano12183229 crossref_primary_10_1002_adhm_202303248 crossref_primary_10_1016_j_ijpharm_2023_122951 crossref_primary_10_37349_eds_2024_00035 crossref_primary_10_3390_nano14020186 crossref_primary_10_3390_physchem3040026 crossref_primary_10_1002_adma_202413210 crossref_primary_10_1002_advs_202308310 crossref_primary_10_1002_adma_202415078 crossref_primary_10_1021_acsmacrolett_4c00405 crossref_primary_10_1002_smll_202301663 crossref_primary_10_1002_smll_202305988 crossref_primary_10_1016_j_scitotenv_2023_169590 crossref_primary_10_1002_adhm_202203252 crossref_primary_10_1002_smll_202406909 crossref_primary_10_1021_acs_molpharmaceut_3c00735 crossref_primary_10_1016_j_jare_2024_05_017 crossref_primary_10_1002_adma_202300665 crossref_primary_10_1002_ptr_8241 crossref_primary_10_1016_j_ejpb_2024_114389 crossref_primary_10_1016_j_addr_2022_114529 crossref_primary_10_1038_s41392_023_01668_1 crossref_primary_10_1016_j_actbio_2024_02_004 crossref_primary_10_1016_j_apsb_2024_11_008 crossref_primary_10_1016_j_jddst_2023_105226 crossref_primary_10_1021_acsnano_4c18489 crossref_primary_10_1021_acsnano_4c13214 crossref_primary_10_1016_j_jconrel_2023_03_052 crossref_primary_10_3390_pharmaceutics15041125 crossref_primary_10_3390_nano13243094 crossref_primary_10_1021_acs_langmuir_4c00181 crossref_primary_10_1021_acs_langmuir_2c01609 crossref_primary_10_1021_acsnano_4c12542 crossref_primary_10_1021_acsomega_2c06882 crossref_primary_10_1016_j_ijbiomac_2023_128339 crossref_primary_10_1016_j_jconrel_2024_10_011 crossref_primary_10_3390_pharmaceutics15030774 crossref_primary_10_1038_s41565_023_01585_y crossref_primary_10_1016_j_ijpharm_2025_125237 crossref_primary_10_1016_j_chempr_2023_09_016 crossref_primary_10_1186_s40164_025_00602_1 crossref_primary_10_1021_acsnano_4c02344 crossref_primary_10_1038_s41467_024_46533_z crossref_primary_10_1016_j_addr_2023_114895 crossref_primary_10_1016_j_jconrel_2023_07_026 crossref_primary_10_1038_s41467_025_57531_0 crossref_primary_10_1038_s41565_023_01455_7 crossref_primary_10_3390_ijms25063449 crossref_primary_10_1002_wnan_1982 crossref_primary_10_1002_adma_202302503 crossref_primary_10_1016_j_ijpharm_2025_125488 crossref_primary_10_1016_j_jpha_2024_101182 crossref_primary_10_3390_pharmaceutics14122810 crossref_primary_10_1021_acs_molpharmaceut_3c01084 crossref_primary_10_1021_jacs_3c13165 crossref_primary_10_1186_s11671_023_03912_7 crossref_primary_10_1016_j_jcis_2024_07_258 crossref_primary_10_1039_D2NR05213J crossref_primary_10_1016_j_jphotochem_2023_115147 crossref_primary_10_1016_j_jhazmat_2023_131915 crossref_primary_10_3390_molecules28135145 crossref_primary_10_1016_j_cclet_2024_110594 crossref_primary_10_1021_acsami_4c15045 crossref_primary_10_2147_IJN_S502591 crossref_primary_10_1021_acs_molpharmaceut_3c00021 crossref_primary_10_1039_D3NH00145H crossref_primary_10_1016_j_ijpharm_2024_123987 crossref_primary_10_1016_j_addr_2024_115304 crossref_primary_10_1021_acs_langmuir_3c01986 crossref_primary_10_3390_biom12111658 crossref_primary_10_1021_acsnano_3c11315 crossref_primary_10_1021_acs_molpharmaceut_4c01179 crossref_primary_10_1016_j_molliq_2024_124381 crossref_primary_10_1016_j_addr_2023_115044 crossref_primary_10_1016_j_cej_2025_161320 crossref_primary_10_1016_j_ijbiomac_2022_07_104 crossref_primary_10_1002_anbr_202300057 crossref_primary_10_1016_j_actbio_2024_06_026 crossref_primary_10_1016_j_ijbiomac_2024_131338 crossref_primary_10_1039_D4PM00170B crossref_primary_10_1186_s12989_024_00574_w crossref_primary_10_3390_biomimetics7030126 crossref_primary_10_1021_acs_bioconjchem_2c00492 crossref_primary_10_1016_j_ijbiomac_2024_138126 crossref_primary_10_1016_j_addr_2024_115216 crossref_primary_10_1016_j_molliq_2024_124032 crossref_primary_10_1002_adfm_202409522 crossref_primary_10_1002_smll_202309616 crossref_primary_10_1016_j_corsci_2024_112317 crossref_primary_10_1016_j_magmed_2025_100002 crossref_primary_10_1002_admi_202400560 crossref_primary_10_1124_jpet_123_001673 crossref_primary_10_1016_j_apsb_2023_05_018 crossref_primary_10_1039_D4BM00608A crossref_primary_10_1002_agt2_323 crossref_primary_10_1039_D4QI01000K crossref_primary_10_1016_j_nantod_2024_102552 crossref_primary_10_1016_j_nantod_2024_102435 crossref_primary_10_1002_adfm_202308446 crossref_primary_10_2174_0122103031297263240612110749 crossref_primary_10_1016_j_apsb_2023_05_024 crossref_primary_10_1039_D4MH90011A crossref_primary_10_1016_j_ijbiomac_2023_128300 |
Cites_doi | 10.2147/IJN.S129300 10.1038/s41565-021-01017-9 10.1007/s11051-015-3008-3 10.1021/acs.nanolett.0c04806 10.1039/C9NR09405A 10.1021/nn3059295 10.1021/acs.bioconjchem.6b00575 10.1002/smll.201801451 10.1016/j.jconrel.2012.03.020 10.1016/j.jcis.2017.01.011 10.1038/s41467-019-11593-z 10.1038/s41565-018-0344-3 10.1007/s00401-021-02275-6 10.1016/j.jconrel.2021.04.001 10.1016/j.impact.2018.12.002 10.1038/196476a0 10.1016/S0378-5173(99)00432-9 10.1016/j.jconrel.2020.07.007 10.1002/anie.201902323 10.1016/j.jconrel.2004.07.028 10.1039/D1CP04574A 10.1021/acs.nanolett.0c03982 10.1038/nnano.2015.330 10.1039/C7NR09502C 10.1002/smll.201603847 10.1038/nnano.2016.269 10.1021/acs.molpharmaceut.8b00612 10.1002/adfm.202106353 10.1073/pnas.0608582104 10.1007/s13204-015-0501-z 10.1016/S0142-9612(02)00525-2 10.1021/acsnano.0c02821 10.1021/bp0001516 10.1016/j.addr.2019.02.008 10.1016/j.apsb.2020.10.023 10.1016/S0021-9258(17)33310-0 10.1016/S0065-3233(08)60065-0 10.1016/j.jcis.2017.07.011 10.1016/j.jconrel.2019.04.023 10.1007/s10439-011-0267-8 10.1126/stke.3272006pe14 10.1038/s41467-020-18237-7 10.1016/j.ijpharm.2005.10.010 10.1039/C9NR06835J 10.1073/pnas.1105270108 10.1021/nn305337c 10.1161/01.CIR.40.5.603 10.1201/9781351070898-2 10.1002/ange.202008175 10.1038/s41565-018-0171-6 10.2147/IJN.S254808 10.1016/j.ijbiomac.2020.08.069 10.1038/s41598-019-49144-7 10.1039/C5NR03701H 10.1038/s41598-020-71170-z 10.1021/acs.nanolett.9b01774 10.1002/admi.201900411 10.1021/acs.bioconjchem.8b00743 10.1038/nnano.2015.47 10.1021/acsnano.5b00147 10.1016/j.addr.2019.01.002 10.1088/1367-2630/15/1/015008 10.1007/s10529-010-0469-4 10.1002/adfm.202100227 10.1021/acsnano.5b03300 10.1038/s41582-019-0228-7 10.1021/acsnano.7b00376 10.1016/j.biomaterials.2013.12.100 10.1016/j.jconrel.2020.01.018 10.1016/j.kint.2017.03.043 10.1021/nn505166x 10.1016/j.msec.2020.111270 10.1021/acsnano.6b00053 10.1021/ar500190q 10.1093/emboj/cdg236 10.1021/la403896h 10.1016/j.ijbiomac.2021.11.110 10.1038/s41577-019-0269-6 10.1074/jbc.272.50.31333 10.1002/jbio.201300154 10.1379/1466-1268(2000)005<0471:FATHSR>2.0.CO;2 10.1111/1541-4337.12838 10.1039/C3MH00075C 10.1002/anie.201800272 10.1097/CND.0000000000000225 10.1002/smll.201801219 10.1021/nn202458g 10.1021/acs.accounts.6b00125 10.1016/j.biomaterials.2021.120888 10.1124/jpet.119.258012 10.1007/978-3-662-48986-4_3386 10.1021/acs.jpcc.5b06266 10.1021/la401192x 10.3390/ijms21041219 10.1039/D1RA02116H 10.1021/nl062743+ 10.3390/biomedicines9050530 10.1039/C6BM00921B 10.1021/acs.analchem.1c01540 10.1038/nnano.2012.207 10.1038/s41467-018-06979-4 10.1016/j.ijbiomac.2021.01.152 10.1159/000336844 10.1016/j.msec.2016.03.059 10.1016/j.jconrel.2005.04.003 10.1093/qjmed/hcaa121 10.1021/acs.biomac.1c00335 10.1089/104454902753759717 10.1016/j.trac.2019.05.039 10.1016/j.biochi.2018.05.014 10.1016/j.jcis.2019.06.086 10.1016/j.biomaterials.2018.03.009 10.1016/S1748-0132(08)70014-8 10.1016/j.msec.2020.110830 10.1073/pnas.1505629112 10.1073/pnas.0805135105 10.2147/IJN.S111029 10.1016/S0022-2275(20)32028-9 10.1021/acsbiomaterials.1c00804 10.1152/physrev.00063.2017 10.1016/j.addr.2009.03.009 10.1016/j.addr.2021.05.017 10.1038/nnano.2010.250 10.1021/acsami.7b16096 10.3389/fimmu.2019.00332 10.1016/j.actbio.2021.05.019 10.1039/C5NR09158F 10.1038/s41467-021-27643-4 10.1021/nn500962q 10.31635/ccschem.020.202000505 10.1016/j.jcis.2009.10.004 10.1016/j.biomaterials.2015.10.019 10.1016/j.addr.2020.09.005 10.1038/nnano.2013.181 10.1016/S1051-0443(07)61437-7 10.1016/j.colsurfb.2017.02.037 10.1021/acs.bioconjchem.9b00348 10.1016/j.jchromb.2020.122504 10.1002/anie.200902672 10.1002/cbin.10459 10.1021/acs.biomac.1c00119 10.1021/acs.bioconjchem.0c00240 10.1021/jacs.7b01118 10.1016/j.biomaterials.2010.09.049 10.1038/s41467-017-00600-w 10.1016/j.bpj.2018.02.036 10.1021/acs.molpharmaceut.1c00525 10.3390/membranes12010073 10.1074/jbc.RA118.006673 10.1016/j.ejpb.2021.04.006 10.1038/mt.2010.85 10.1002/bip.21646 10.1016/j.addr.2020.09.003 10.1021/acsami.5b04290 10.1038/s41598-020-66572-y 10.1021/acs.molpharmaceut.0c00411 10.1016/j.molimm.2015.02.027 10.1016/j.addr.2015.09.012 10.1021/nn300223w 10.1148/radiol.2017170130 10.1021/acsomega.9b00460 10.1039/C8GC01171K 10.1016/j.jcis.2021.08.148 10.1039/C7NR08322J 10.3389/fbioe.2020.00166 10.1038/s41467-018-05384-1 10.1002/smll.202000285 10.1042/bj0690012 10.1016/B978-0-08-101750-0.00003-9 10.1021/nn404481f 10.1021/acsami.5b00371 10.1039/D1NR03155D 10.1021/nn200021j 10.1038/s41467-019-12470-5 10.2147/IJN.S230865 10.1038/s41565-019-0591-y 10.1039/C9LC00341J 10.1093/jac/49.suppl_1.21 10.1016/j.ijpharm.2015.08.060 10.3390/nano11040888 10.2147/IJN.S304138 10.1016/j.jconrel.2020.01.012 10.1111/j.1365-2516.2008.01832.x 10.1016/j.ijpharm.2021.120407 10.1111/bph.14711 10.1021/acsnano.5b01326 10.1038/s41467-018-04873-7 10.1016/j.ejpb.2019.05.006 10.1002/pmic.200401335 10.1016/j.clinbiochem.2017.04.007 10.1016/j.ijpharm.2020.119792 10.3109/17435390.2011.604442 10.1007/s00449-020-02330-8 10.1016/j.jprot.2015.10.028 10.1021/acsami.0c12341 10.1146/annurev.iy.06.040188.001343 10.1111/cen.12446 10.1021/nn901372t 10.1038/s41598-020-57943-6 10.1002/adtp.201900124 10.1038/s41565-021-00924-1 10.1039/c0py00406e 10.1021/nn405019v 10.1038/s41423-018-0060-9 10.1080/10611860290031877 10.7150/thno.23804 10.1039/C5NR00520E 10.1002/smll.201907574 10.1155/2019/5410657 10.1186/1477-3155-9-20 10.2147/IJN.S220082 10.1038/ncomms11770 10.1023/A:1016062224568 10.1021/tx5001317 10.1002/med.21767 |
ContentType | Journal Article |
Copyright | 2022 Elsevier B.V. Copyright © 2022 Elsevier B.V. All rights reserved. |
Copyright_xml | – notice: 2022 Elsevier B.V. – notice: Copyright © 2022 Elsevier B.V. All rights reserved. |
DBID | AAYXX CITATION NPM 7X8 |
DOI | 10.1016/j.addr.2022.114356 |
DatabaseName | CrossRef PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology Pharmacy, Therapeutics, & Pharmacology |
EISSN | 1872-8294 |
ExternalDocumentID | 35595022 10_1016_j_addr_2022_114356 S0169409X22002460 |
Genre | Journal Article Review |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1RT 1~. 1~5 23M 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JM AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATCM AAXUO ABFNM ABGSF ABJNI ABMAC ABUDA ABXDB ABYKQ ABZDS ACDAQ ACGFS ACIUM ACRLP ADBBV ADEZE ADMUD ADUVX AEBSH AEHWI AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGRDE AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV ALCLG ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC C45 CS3 DOVZS EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMT HVGLF HX~ HZ~ IHE J1W KOM M34 M41 MO0 N9A O-L O9- OAUVE OGGZJ OVD OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SCC SDF SDG SDP SES SEW SPCBC SPT SSP SSU SSZ T5K TEORI WUQ Y6R ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH EFKBS NPM 7X8 |
ID | FETCH-LOGICAL-c422t-2ea989056df7b2f637d9d0dbfa1199eec9f27eb66050d85cf93cfce6ef92007d3 |
IEDL.DBID | .~1 |
ISSN | 0169-409X 1872-8294 |
IngestDate | Fri Jul 11 16:55:25 EDT 2025 Wed Sep 03 05:48:19 EDT 2025 Thu Apr 24 22:53:29 EDT 2025 Tue Jul 01 03:36:08 EDT 2025 Fri Feb 23 02:41:02 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | RES BBB NSPs LNP UV–vis BSA LC-MS/MS Tf FBS HSA HBP MNPs RNAi AD SWCNTs MW PGA PDMA NRs OEG SDS-PAGE NC In vivo fate MWCNTs LCST OVA Ig PCS ABC FDA PPC Drug delivery DLS SNAs HRG 4 NSs Nanoparticles HER 2 LDL β-lg pI Protein corona CD DSPE PHPMA VEGF PMC Protein-nanomaterial interaction MSN siRNA Apos NIPAm NPs PC PEG PLGA PK TEM |
Language | English |
License | Copyright © 2022 Elsevier B.V. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c422t-2ea989056df7b2f637d9d0dbfa1199eec9f27eb66050d85cf93cfce6ef92007d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
PMID | 35595022 |
PQID | 2667786711 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_2667786711 pubmed_primary_35595022 crossref_citationtrail_10_1016_j_addr_2022_114356 crossref_primary_10_1016_j_addr_2022_114356 elsevier_sciencedirect_doi_10_1016_j_addr_2022_114356 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-07-01 |
PublicationDateYYYYMMDD | 2022-07-01 |
PublicationDate_xml | – month: 07 year: 2022 text: 2022-07-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Advanced drug delivery reviews |
PublicationTitleAlternate | Adv Drug Deliv Rev |
PublicationYear | 2022 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Medjeral-Thomas, Lomax-Browne, Beckwith, Willicombe, McLean, Brookes, Pusey, Falchi, Cook, Pickering (b0205) 2017; 92 Tengjisi, Hui, Fan, Zou, Talbo, Yang (b0290) 2022; 606 Livingstone, Borai (b0250) 2014; 80 Vlatkovic (b0410) 2021; 9 Tavakoli, Kari, Turunen, Lajunen, Schmitt, Lehtinen, Tasaka, Parkkila, Ndika, Viitala, Alenius, Urtti, Subrizi (b0730) 2021; 18 Cater, Wilson, Wyatt (b0215) 2019; 2019 Dong, Laaksonen, Cao, Ji, Lu (b0480) 2019; 6 Chen, Wang, Griffin, Brenneman, Banda, Holers, Backos, Wu, Moghimi, Simberg (b0615) 2017; 12 Barrán-Berdón, Pozzi, Caracciolo, Capriotti, Caruso, Cavaliere, Riccioli, Palchetti, Laganà (b0670) 2013; 29 Knop, Hoogenboom, Fischer, Schubert (b1040) 2010; 49 Lundqvist, Stigler, Cedervall, Berggård, Flanagan, Lynch, Elia, Dawson (b0755) 2011; 5 Lu, Xu, Ding, Yu, Huo, Ma (b0305) 2019; 10 Hühn, Kantner, Geidel, Brandholt, De Cock, Soenen, Rivera_Gil, Montenegro, Braeckmans, Müllen, Nienhaus, Klapper, Parak (b0725) 2013; 7 Verhulst, Haan, Toussaint (b0160) 2019; 20 Wu, Wang, Guo, Zhang, Ge, Huang, Zhou, Li, Peng, Li (b0195) 2020; 113 Kreuter, Shamenkov, Petrov, Ramge, Cychutek, Koch-Brandt, Alyautdin (b0960) 2002; 10 Lynch, Dawson (b0090) 2008; 3 Lindman, Lynch, Thulin, Nilsson, Dawson, Linse (b0365) 2007; 7 Karabasz, Szczepanowicz, Cierniak, Mezyk-Kopec, Dyduch, Szczech, Bereta, Bzowska (b1065) 2019; 14 A.S. Abu Lila, T. Shimizu, T. Ishida (Eds.), 3-PEGylation and anti-PEG antibodies, in: A. Parambath (Ed.) Engineering of Biomaterials for Drug Delivery Systems, Woodhead Publishing, Cambridge, 2018, pp. 51-68. Germain, Caputo, Metcalfe, Tosi, Spring, Åslund, Pottier, Schiffelers, Ceccaldi, Schmid (b0015) 2020; 326 Guan, Shen, Zhang, Jiang, Yang, Lou, Qian, Lu, Zhan (b1020) 2018; 9 Bogart, Pourroy, Murphy, Puntes, Pellegrino, Rosenblum, Peer, Lévy (b1035) 2014; 8 Cantarutti, Hunashal, La Rosa, Condorelli, Giorgetti, Bellotti, Fogolari, Esposito (b0515) 2022; 24 Owensiii, Peppas (b0920) 2006; 307 Li, Sun, Li, Hu, Luo, Shi, Pich (b0980) 2021; 31 Yan, Gause, Kamphuis, Ang, O’Brien-Simpson, Lenzo, Reynolds, Nice, Caruso (b1005) 2013; 7 Weber, Morsbach, Landfester (b0050) 2019; 58 Cui, Su, Tan (b0580) 2022; 21 Cheng, Tian, Wu, Li, Tian, Chong, Chai, Zhao, Chen, Ge (b0840) 2015; 7 Schaffler, Sousa, Wenk, Sitia, Hirn, Schleh, Haberl, Violatto, Canovi, Andreozzi, Salmona, Bigini, Kreyling, Krol (b0955) 2014; 35 L. Rydén, Ceruloplasmin (Eds.), in: Copper proteins and copper enzymes, CRC Press, Boca Raton, 2018, pp. 37-100. García-Álvarez, Hadjidemetriou, Sánchez-Iglesias, Liz-Marzán, Kostarelos (b0710) 2018; 10 Mo, Xie, Wei, Zhao (b1000) 2018; 9 Sorice, Misasi (b0175) 2020; 17 Huang, Wang, Zhang, Wang, Zou, Wu (b0855) 2021; 13 P. Ponka, C. Beaumont, D.R. Richardson (Eds.), Function and regulation of transferrin and ferritin, in: Semin. Hematol., Elsevier, Amsterdam, 1998, pp. 35-54. Xin, Teng, Du, Lv, Xiao, Wu, He, Yin (b0715) 2018; 8 Zackova Suchanova, Hejtmankova, Neburkova, Cigler, Forstova, Spanielova (b0895) 2020; 31 Moghimi, Simberg, Skotland, Yaghmur, Hunter (b1030) 2019; 370 Chinen, Guan, Ko, Mirkin (b0930) 2017; 13 Pozzi, Caracciolo, Digiacomo, Colapicchioni, Palchetti, Capriotti, Cavaliere, Zenezini Chiozzi, Puglisi, Laganà (b0555) 2015; 7 Agrahari, Burnouf, Burnouf, Agrahari (b0805) 2019; 148 Lynch, Dawson, Linse (b0760) 2006; 2006 Bélteky, Rónavári, Zakupszky, Boka, Igaz, Szerencsés, Pfeiffer, Vágvölgyi, Kiricsi, Kónya (b0825) 2021; 16 Durbin, Jonas (b0120) 1997; 272 Tenzer, Docter, Kuharev, Musyanovych, Fetz, Hecht, Schlenk, Fischer, Kiouptsi, Reinhardt, Landfester, Schild, Maskos, Knauer, Stauber (b1100) 2013; 8 Piella, Bastús, Puntes (b0690) 2017; 28 Van Hong Nguyen (b0310) 2017; 12 Mohammad-Beigi, Hayashi, Zeuthen, Eskandari, Scavenius, Juul-Madsen, Vorup-Jensen, Enghild, Sutherland (b0695) 2020; 11 Yamazaki, Zhao, Caulfield, Liu, Bu (b0210) 2019; 15 Markiewicz, Kumirska, Lynch, Matzke, Köser, Bemowsky, Docter, Stauber, Westmeier, Stolte (b0080) 2018; 20 Gessner, Waicz, Lieske, Paulke, Mäder, Müller (b0775) 2000; 196 Anselmo, Zhang, Kumar, Vogus, Menegatti, Helgeson, Mitragotri (b0810) 2015; 9 Muthusamy, Hanumanthu, Suresh, Rekha, Srinivas, Karthick, Vrushabendra, Sharma, Mishra, Chatterjee, Mangala, Shivashankar, Chandrika, Deshpande, Suresh, Kannabiran, Niranjan, Nalli, Prasad, Arun, Reddy, Chandran, Jadhav, Julie, Mahesh, John, Palvankar, Sudhir, Bala, Rashmi, Vishnupriya, Dhar, Reshma, Chaerkady, Gandhi, Harsha, Mohan, Deshpande, Sarker, Pandey (b0070) 2005; 5 Barbalinardo, Caicci, Cavallini, Gentili (b0990) 2018; 14 Lai, Li, Wang, Nan, Xiang, Ma (b0850) 2020; 15 Akinc, Maier, Manoharan, Fitzgerald, Jayaraman, Barros, Ansell, Du, Hope, Madden, Mui, Semple, Tam, Ciufolini, Witzigmann, Kulkarni, van der Meel, Cullis (b1120) 2019; 14 Mandal, Konduru, Ramazani, Molina, Larson (b0770) 2018; 25 Mithani, Bakatselou, TenHoor, Dressman (b0500) 1996; 13 Ding, Yao, Yin, Li, Huang, Wu, Wang, Guo, Wang, Wu (b0720) 2018; 14 Cedervall, Lynch, Lindman, Berggård, Thulin, Nilsson, Dawson, Linse (b0790) 2007; 104 Li, Wang, Tang, Yin, Tang, He, Zou, Peng (b0100) 2021; 129 Bewersdorff, Glitscher, Bergueiro, Eravci, Miceli, Haase, Calderón (b0350) 2020; 117 Huang, Sutliff, Wu, Nandi, Benge, Terashima, Ralston, Drohan, Huang, Rodriguez (b0135) 2001; 17 Gabe, Gault, Ross, Mason, Mills, Schillingford, Braunwald (b0535) 1969; 40 O’Brien, Shea (b0465) 2016; 49 Hadjidemetriou, Al-Ahmady, Kostarelos (b0530) 2016; 8 Barui, Oh, Jana, Kim, Ryu (b0060) 2020; 3 Ustunol, Gonzalez-Pech, Grassian (b0490) 2019; 554 Unkeless, Scigliano, Freedman (b0110) 1988; 6 Pustulka, Ling, Pish, Champion (b0295) 2020; 12 Gros, Forster, Lin (b0505) 1976; 251 Oh, Kim, Palanikumar, Go, Jana, Park, Kim, Kim, Seo, Kwak, Kim, Kang, Ryu (b0870) 2018; 9 Su, Jiang, Xu, Yu, Chen (b1140) 2018; 15 Kitano, Kondo, Suzuki, Ohno (b0470) 2010; 345 Baimanov, Cai, Chen (b0750) 2019; 30 Park (b0745) 2020; 15 Ogawara, Furumoto, Nagayama, Minato, Higaki, Kai, Kimura (b1080) 2004; 100 Zheng, Pierre-Pierre, Yan, Huo, Almodovar, Valerio, Rivera-Ramirez, Griffith, Decker, Chen, Zhu (b0640) 2015; 7 Ding, Guan, Wang, Long, Liu, Qian, Wei, Lu, Zhan (b1015) 2020; 319 Givens, Xu, Fiegel, Grassian (b0485) 2017; 493 Kaneko, Miyaji, Gonçalves, Ferreira, Solórzano, MacLoughlin, Saleem (b0375) 2021; 599 Xu, Liao, Liu, Chu, He, Wang (b0475) 2021; 3 Bertrand, Grenier, Mahmoudi, Lima, Appel, Dormont, Lim, Karnik, Langer, Farokhzad (b0390) 2017; 8 Lesniak, Campbell, Monopoli, Lynch, Salvati, Dawson (b0445) 2010; 31 Hadjidemetriou, McAdam, Garner, Thackeray, Knight, Smith, Al-Ahmady, Mazza, Rogan, Clamp, Kostarelos (b0380) 2019; 31 Frank, Marcel (b0115) 2000; 41 Stater, Sonay, Hart, Grimm (b0040) 2021; 16 Fleischer, Payne (b0735) 2014; 47 Chu, Tang, Zhang, Li, Qian, Wei, Ying, Lu, Zhan (b0265) 2021; 21 Di, Xie, Xu (b0400) 2020; 154-155 Akinc, Querbes, De, Qin, Frank-Kamenetsky, Jayaprakash, Jayaraman, Rajeev, Cantley, Dorkin, Butler, Qin, Racie, Sprague, Fava, Zeigerer, Hope, Zerial, Sah, Fitzgerald, Tracy, Manoharan, Koteliansky, Fougerolles, Maier (b1125) 2010; 18 Barui, Oh, Jana, Kim, Ryu (b1070) 2019; 3 Huang, Yang, Fang, Li, Zhong, Zheng, Zhang, Wang, Wang, Zou, Wu (b1090) 2020; 12 Alberg, Kramer, Schinnerer, Hu, Seidl, Leps, Drude, Möckel, Rijcken, Lammers, Diken, Maskos, Morsbach, Landfester, Tenzer, Barz, Zentel (b0045) 2020; 16 Adler-Moore, Proffitt (b0650) 2002; 49 Wang, Zhang, Xiao, Liu, Zhou, He, Xia, Gong, Wang, Gao (b0875) 2021; 333 Gruner, Kauscher, Linder, Monopoli (b1075) 2016; 137 Huo, Colon, Cordero, Bogdanovic, Baker, Goodison, Pensky (b0635) 2011; 9 Zhang, Guan, Jiang, Yang, Liu, Hua, Mao, Li, Lu, Qian, Zhan (b0965) 2019; 10 Palchetti, Colapicchioni, Digiacomo, Caracciolo, Pozzi, Capriotti, La Barbera, Laganà (b0385) 1858; 2016 Onogi, Lee, Fruehauf, Shea (b0460) 2021; 22 Kelly, Åberg, Polo, O'Connell, Cookman, Fallon, Krpetić, Dawson (b1135) 2015; 10 Suzuki, Suzuki, Hihara, Kubara, Kondo, Hyodo, Yamazaki, Ishida, Ishihara (b0415) 2020; 588 Bai, Raghavendra, Podila, Brown (b0995) 2016; 11 Madathiparambil Visalakshan, González García, Benzigar, Ghazaryan, Simon, Mierczynska-Vasilev, Michl, Vinu, Mailänder, Morsbach, Landfester, Vasilev (b0345) 2020; 16 Baran, Shi, Wang (b0545) 2015; 8 Wang, Ding, Guan, Liu, Wang, Jin, Hou, Lu, Qian, Wang, Zhan (b0890) 2020; 14 Park (b0095) 2020; 15 Barenholz (b1045) 2012; 160 Suk, Xu, Kim, Hanes, Ensign (b0395) 2016; 99 Yang, Li, Yuan, Xiang (b0625) 2021; 93 Ge, Du, Zhao, Wang, Liu, Li, Yang, Zhou, Zhao, Chai, Chen (b0985) 2011; 108 Hasday, Singh (b0430) 2000; 5 Thiele, Diederichs, Reszka, Merkle, Walter (b0940) 2003; 24 Partikel, Korte, Stein, Mulac, Herrmann, Humpf, Langer (b0320) 2019; 141 Li, Zhang, Li, Shao, Chen, Lv, Huang (b0450) 2021; 11 Salatin, Maleki Dizaj, Yari Khosroushahi (b0665) 2015; 39 Chen, Wang, Griffin, Brenneman, Banda, Holers, Backos, Wu, Moghimi, Simberg (b0900) 2017; 12 Lesniak, Fenaroli, Monopoli, Åberg, Dawson, Salvati (b0915) 2012; 6 Nguyen, Lee (b0740) 2017; 12 Barbu, Hamad, Lind, Ekdahl, Nilsson (b0125) 2015; 67 Zhu, Xu, Solis, Tao, Wang, Behrens, Xu, Zhao, Liu, Wu, Zhang, Wistuba, Farokhzad, Zetter (b1050) 2015; 112 Mirshafiee, Kim, Park, Mahmoudi, Kraft (b1130) 2016; 75 Yoshino, Fujimoto, Takada, Kawamura, Ogawa, Kamata, Kodera, Shichiri (b0155) 2019; 9 Pinals, Yang, Rosenberg, Chaudhary, Crothers, Iavarone, Hammel, Landry (b0260) 2020; 132 Deng, Liang, Monteiro, Toth, Minchin (b1010) 2011; 6 Corbo, Molinaro, Taraballi, Toledano Furman, Hartman, Sherman, De Rosa, Kirui, Salvatore, Tasciotti (b0685) 2017; 11 Zhang, Wu, Yu, Ruan, He, Gao (b0675) 2018; 10 Yu, Andruschak, Yeh, Grecov, Kizhakkedathu (b0610) 2018; 166 Feinberg, Uitdehaag, Davies, Wallis, Drickamer, Weis (b0225) 2003; 22 Piloni, Wong, Chen, Lord, Walther, Stenzel (b0360) 2019; 11 Casals, Pfaller, Duschl, Oostingh, Puntes (b0525) 2010; 4 Aliyandi, Reker-Smit, Bron, Zuhorn, Salvati (b0845) 2021; 7 Kumar, Aswal, Callow (b0275) 2014; 30 del Caño, Mateus, Sánchez-Obrero, Sevilla, Madueño, Blázquez, Pineda (b0285) 2017; 505 Vidaurre-Agut, Rivero-Buceta, Romaní-Cubells, Clemments, Vera-Donoso, Landry, Botella (b0425) 2019; 4 Zhao, Ukidve, Krishnan, Mitragotri Livingstone (10.1016/j.addr.2022.114356_b0250) 2014; 80 Ustunol (10.1016/j.addr.2022.114356_b0490) 2019; 554 Aggarwal (10.1016/j.addr.2022.114356_b0925) 2009; 61 Cater (10.1016/j.addr.2022.114356_b0215) 2019; 2019 Mitchell (10.1016/j.addr.2022.114356_b0550) 2013; 15 Corbo (10.1016/j.addr.2022.114356_b1150) 2017; 5 Saha (10.1016/j.addr.2022.114356_b0785) 2014; 1 Gao (10.1016/j.addr.2022.114356_b0190) 2019; 176 Gessner (10.1016/j.addr.2022.114356_b0775) 2000; 196 Tolosano (10.1016/j.addr.2022.114356_b0145) 2002; 21 Meeks (10.1016/j.addr.2022.114356_b0220) 2008; 14 Feinberg (10.1016/j.addr.2022.114356_b0225) 2003; 22 Zhu (10.1016/j.addr.2022.114356_b1050) 2015; 112 Oh (10.1016/j.addr.2022.114356_b0870) 2018; 9 Hadjidemetriou (10.1016/j.addr.2022.114356_b1115) 2015; 9 Varnamkhasti (10.1016/j.addr.2022.114356_b0880) 2015; 494 Li (10.1016/j.addr.2022.114356_b0980) 2021; 31 Stater (10.1016/j.addr.2022.114356_b0040) 2021; 16 Adler-Moore (10.1016/j.addr.2022.114356_b0650) 2002; 49 Irvine (10.1016/j.addr.2022.114356_b0010) 2020; 20 Tay (10.1016/j.addr.2022.114356_b0950) 2019; 10 Yang (10.1016/j.addr.2022.114356_b0625) 2021; 93 Huo (10.1016/j.addr.2022.114356_b0635) 2011; 9 Wang (10.1016/j.addr.2022.114356_b0875) 2021; 333 Yan (10.1016/j.addr.2022.114356_b1005) 2013; 7 Pustulka (10.1016/j.addr.2022.114356_b0295) 2020; 12 Zackova Suchanova (10.1016/j.addr.2022.114356_b0895) 2020; 31 Muthusamy (10.1016/j.addr.2022.114356_b0070) 2005; 5 Petersen (10.1016/j.addr.2022.114356_b0235) 2018; 98 Xin (10.1016/j.addr.2022.114356_b0715) 2018; 8 Durbin (10.1016/j.addr.2022.114356_b0120) 1997; 272 Cui (10.1016/j.addr.2022.114356_b0580) 2022; 21 Park (10.1016/j.addr.2022.114356_b0745) 2020; 15 Su (10.1016/j.addr.2022.114356_b1140) 2018; 15 Huang (10.1016/j.addr.2022.114356_b0855) 2021; 13 Lu (10.1016/j.addr.2022.114356_b0970) 2014; 27 Gruner (10.1016/j.addr.2022.114356_b1075) 2016; 137 Spreen (10.1016/j.addr.2022.114356_b0370) 2021; 163 Ren (10.1016/j.addr.2022.114356_b0655) 2019; 19 Bekard (10.1016/j.addr.2022.114356_b0600) 2011; 95 Zhang (10.1016/j.addr.2022.114356_b0675) 2018; 10 Lima (10.1016/j.addr.2022.114356_b0315) 2020; 10 Yu (10.1016/j.addr.2022.114356_b0860) 2020; 20 Ishida (10.1016/j.addr.2022.114356_b1055) 2005; 105 Madathiparambil Visalakshan (10.1016/j.addr.2022.114356_b0345) 2020; 16 Mahmoudi (10.1016/j.addr.2022.114356_b0440) 2013; 7 Shim (10.1016/j.addr.2022.114356_b0590) 2008; 111 Barz (10.1016/j.addr.2022.114356_b1060) 2011; 2 Barbu (10.1016/j.addr.2022.114356_b0125) 2015; 67 Kaneko (10.1016/j.addr.2022.114356_b0375) 2021; 599 Corbo (10.1016/j.addr.2022.114356_b0685) 2017; 11 Masaoutis (10.1016/j.addr.2022.114356_b0630) 2018; 151 Gros (10.1016/j.addr.2022.114356_b0505) 1976; 251 Frank (10.1016/j.addr.2022.114356_b0115) 2000; 41 Barrán-Berdón (10.1016/j.addr.2022.114356_b0670) 2013; 29 Tenzer (10.1016/j.addr.2022.114356_b1100) 2013; 8 Huang (10.1016/j.addr.2022.114356_b1090) 2020; 12 Peters (10.1016/j.addr.2022.114356_b0105) 1985; 37 Ding (10.1016/j.addr.2022.114356_b0720) 2018; 14 Markiewicz (10.1016/j.addr.2022.114356_b0080) 2018; 20 Mithani (10.1016/j.addr.2022.114356_b0500) 1996; 13 Cheng (10.1016/j.addr.2022.114356_b0840) 2015; 7 Vroman (10.1016/j.addr.2022.114356_b0025) 1962; 196 Lindman (10.1016/j.addr.2022.114356_b0365) 2007; 7 Hühn (10.1016/j.addr.2022.114356_b0725) 2013; 7 Mishra (10.1016/j.addr.2022.114356_b0270) 2021; 175 Anselmo (10.1016/j.addr.2022.114356_b0810) 2015; 9 Cao (10.1016/j.addr.2022.114356_b0830) 2019; 13 Kreuter (10.1016/j.addr.2022.114356_b0960) 2002; 10 Glancy (10.1016/j.addr.2022.114356_b0335) 2019; 304 Rampado (10.1016/j.addr.2022.114356_b0055) 2020; 8 Di (10.1016/j.addr.2022.114356_b0400) 2020; 154-155 Monopoli (10.1016/j.addr.2022.114356_b0910) 2012; 7 Chinen (10.1016/j.addr.2022.114356_b0930) 2017; 13 Aabom (10.1016/j.addr.2022.114356_b0185) 2017; 50 Li (10.1016/j.addr.2022.114356_b0100) 2021; 129 Bai (10.1016/j.addr.2022.114356_b0995) 2016; 11 Weber (10.1016/j.addr.2022.114356_b0050) 2019; 58 Yoshimatsu (10.1016/j.addr.2022.114356_b0495) 2021; 22 García-Álvarez (10.1016/j.addr.2022.114356_b0065) 2021; 11 Kelly (10.1016/j.addr.2022.114356_b1135) 2015; 10 Hadjidemetriou (10.1016/j.addr.2022.114356_b0380) 2019; 31 Nicoletti (10.1016/j.addr.2022.114356_b0085) 2021; 1163 Ho (10.1016/j.addr.2022.114356_b0820) 2018; 29 Wang (10.1016/j.addr.2022.114356_b0890) 2020; 14 García-Álvarez (10.1016/j.addr.2022.114356_b0710) 2018; 10 Ge (10.1016/j.addr.2022.114356_b0985) 2011; 108 Unkeless (10.1016/j.addr.2022.114356_b0110) 1988; 6 Pozzi (10.1016/j.addr.2022.114356_b0555) 2015; 7 Lynch (10.1016/j.addr.2022.114356_b0760) 2006; 2006 Li (10.1016/j.addr.2022.114356_b0450) 2021; 11 Nguyen (10.1016/j.addr.2022.114356_b0740) 2017; 12 Verhulst (10.1016/j.addr.2022.114356_b0160) 2019; 20 Pourjavadi (10.1016/j.addr.2022.114356_b0835) 2015; 17 Knop (10.1016/j.addr.2022.114356_b1040) 2010; 49 Dewald (10.1016/j.addr.2022.114356_b0280) 2015; 119 Salatin (10.1016/j.addr.2022.114356_b0665) 2015; 39 10.1016/j.addr.2022.114356_b0130 Medjeral-Thomas (10.1016/j.addr.2022.114356_b0205) 2017; 92 Bangham (10.1016/j.addr.2022.114356_b0030) 1958; 69 Lesniak (10.1016/j.addr.2022.114356_b0915) 2012; 6 Zhao (10.1016/j.addr.2022.114356_b0020) 2019; 143 Tavakoli (10.1016/j.addr.2022.114356_b0730) 2021; 18 Deng (10.1016/j.addr.2022.114356_b1010) 2011; 6 Ogawara (10.1016/j.addr.2022.114356_b1080) 2004; 100 Yamazaki (10.1016/j.addr.2022.114356_b0210) 2019; 15 Treuel (10.1016/j.addr.2022.114356_b0905) 2014; 8 Tonigold (10.1016/j.addr.2022.114356_b1085) 2018; 13 Braganza (10.1016/j.addr.2022.114356_b0230) 2019; 294 Dong (10.1016/j.addr.2022.114356_b0480) 2019; 6 (10.1016/j.addr.2022.114356_b0435) 2001 Akinc (10.1016/j.addr.2022.114356_b1125) 2010; 18 Chandika (10.1016/j.addr.2022.114356_b0165) 2020; 161 Mohammad-Beigi (10.1016/j.addr.2022.114356_b0695) 2020; 11 Digiacomo (10.1016/j.addr.2022.114356_b0585) 2019; 19 Lundqvist (10.1016/j.addr.2022.114356_b1095) 2008; 105 Xu (10.1016/j.addr.2022.114356_b0475) 2021; 3 Bewersdorff (10.1016/j.addr.2022.114356_b0350) 2020; 117 Yoshino (10.1016/j.addr.2022.114356_b0155) 2019; 9 Owensiii (10.1016/j.addr.2022.114356_b0920) 2006; 307 Zheng (10.1016/j.addr.2022.114356_b0640) 2015; 7 Guan (10.1016/j.addr.2022.114356_b1020) 2018; 9 Cedervall (10.1016/j.addr.2022.114356_b0035) 2007; 104 Baran (10.1016/j.addr.2022.114356_b0545) 2015; 8 Piella (10.1016/j.addr.2022.114356_b0690) 2017; 28 Lu (10.1016/j.addr.2022.114356_b0305) 2019; 10 Pinals (10.1016/j.addr.2022.114356_b0260) 2020; 132 Wang (10.1016/j.addr.2022.114356_b0330) 2021; 11 Wei (10.1016/j.addr.2022.114356_b1110) 2020; 319 Cedervall (10.1016/j.addr.2022.114356_b0790) 2007; 104 Chu (10.1016/j.addr.2022.114356_b0265) 2021; 21 Hasday (10.1016/j.addr.2022.114356_b0430) 2000; 5 Park (10.1016/j.addr.2022.114356_b0095) 2020; 15 Ding (10.1016/j.addr.2022.114356_b1015) 2020; 319 Barui (10.1016/j.addr.2022.114356_b1070) 2019; 3 Aliyandi (10.1016/j.addr.2022.114356_b0845) 2021; 7 Luby (10.1016/j.addr.2022.114356_b0565) 2016; 6 Vlatkovic (10.1016/j.addr.2022.114356_b0410) 2021; 9 Wu (10.1016/j.addr.2022.114356_b0195) 2020; 113 Zhang (10.1016/j.addr.2022.114356_b1105) 2015; 9 10.1016/j.addr.2022.114356_b0180 Bogart (10.1016/j.addr.2022.114356_b1035) 2014; 8 Bertrand (10.1016/j.addr.2022.114356_b0390) 2017; 8 Suk (10.1016/j.addr.2022.114356_b0395) 2016; 99 Wassell (10.1016/j.addr.2022.114356_b0140) 2000; 46 Zeng (10.1016/j.addr.2022.114356_b0815) 2019; 118 Tavakol (10.1016/j.addr.2022.114356_b0660) 2018; 10 Mo (10.1016/j.addr.2022.114356_b1000) 2018; 9 10.1016/j.addr.2022.114356_b0975 Fleischer (10.1016/j.addr.2022.114356_b0735) 2014; 47 Akinc (10.1016/j.addr.2022.114356_b1120) 2019; 14 Barbalinardo (10.1016/j.addr.2022.114356_b0990) 2018; 14 Casals (10.1016/j.addr.2022.114356_b0525) 2010; 4 Bychkova (10.1016/j.addr.2022.114356_b0510) 2022; 194 Ashton (10.1016/j.addr.2022.114356_b0620) 2021; 141 10.1016/j.addr.2022.114356_b0170 Piloni (10.1016/j.addr.2022.114356_b0360) 2019; 11 Onogi (10.1016/j.addr.2022.114356_b0460) 2021; 22 Hu (10.1016/j.addr.2022.114356_b1145) 2011; 5 Karabasz (10.1016/j.addr.2022.114356_b1065) 2019; 14 Patten (10.1016/j.addr.2022.114356_b0200) 2021; 170 Hajipour (10.1016/j.addr.2022.114356_b0645) 2015; 7 Bélteky (10.1016/j.addr.2022.114356_b0825) 2021; 16 Xiao (10.1016/j.addr.2022.114356_b0865) 2021; 274 Baimanov (10.1016/j.addr.2022.114356_b0750) 2019; 30 Schaffler (10.1016/j.addr.2022.114356_b0955) 2014; 35 Greish (10.1016/j.addr.2022.114356_b0765) 2012; 6 10.1016/j.addr.2022.114356_b0405 Zhang (10.1016/j.addr.2022.114356_b0325) 2021; 41 Dolan (10.1016/j.addr.2022.114356_b0540) 2011; 39 Zhang (10.1016/j.addr.2022.114356_b0965) 2019; 10 Schittek (10.1016/j.addr.2022.114356_b0245) 2012; 4 Vidaurre-Agut (10.1016/j.addr.2022.114356_b0425) 2019; 4 Alberg (10.1016/j.addr.2022.114356_b0045) 2020; 16 Lesniak (10.1016/j.addr.2022.114356_b0445) 2010; 31 Thiele (10.1016/j.addr.2022.114356_b0940) 2003; 24 Chen (10.1016/j.addr.2022.114356_b0900) 2017; 12 Palchetti (10.1016/j.addr.2022.114356_b0385) 1858; 2016 Chen (10.1016/j.addr.2022.114356_b0615) 2017; 12 Barenholz (10.1016/j.addr.2022.114356_b1045) 2012; 160 Sorice (10.1016/j.addr.2022.114356_b0175) 2020; 17 del Caño (10.1016/j.addr.2022.114356_b0285) 2017; 505 Clemments (10.1016/j.addr.2022.114356_b0420) 2017; 139 Tekie (10.1016/j.addr.2022.114356_b0935) 2020; 10 Prawatborisut (10.1016/j.addr.2022.114356_b0455) 2022; 32 Gabe (10.1016/j.addr.2022.114356_b0535) 1969; 40 Simon (10.1016/j.addr.2022.114356_b0800) 2018; 57 Van Hong Nguyen (10.1016/j.addr.2022.114356_b0310) 2017; 12 Saha (10.1016/j.addr.2022.114356_b0780) 2016; 10 Cantarutti (10.1016/j.addr.2022.114356_b0515) 2022; 24 Wang (10.1016/j.addr.2022.114356_b0340) 2020; 111 Vu (10.1016/j.addr.2022.114356_b1025) 2019; 14 Lundqvist (10.1016/j.addr.2022.114356_b0300) 2008; 105 Jayaram (10.1016/j.addr.2022.114356_b0570) 2018; 115 Mahmoudi (10.1016/j.addr.2022.114356_b0255) 2022; 13 Kapate (10.1016/j.addr.2022.114356_b0355) 2021; 177 Miclaus (10.1016/j.addr.2022.114356_b0700) 2016; 7 Huang (10.1016/j.addr.2022.114356_b0135) 2001; 17 Slack (10.1016/j.addr.2022.114356_b0520) 1995 Winnersbach (10.1016/j.addr.2022.114356_b0605) 2022; 12 Aggarwal |
References_xml | – volume: 11 start-page: 1030 year: 2021 end-page: 1046 ident: b0330 article-title: Impact of particle size and pH on protein corona formation of solid lipid nanoparticles: a proof-of-concept study publication-title: Acta Pharma. Sin. B – volume: 251 start-page: 4398 year: 1976 end-page: 4407 ident: b0505 article-title: The carbamate reaction of glycylglycine, plasma, and tissue extracts evaluated by a pH stopped flow apparatus publication-title: J. Biol. Chem. – volume: 2016 start-page: 189 year: 1858 end-page: 196 ident: b0385 article-title: The protein corona of circulating PEGylated liposomes publication-title: Biochim. Biophys. Acta – volume: 2006 year: 2006 ident: b0760 article-title: Detecting Cryptic Epitopes Created by Nanoparticles publication-title: Sci. STKE – volume: 166 start-page: 79 year: 2018 end-page: 95 ident: b0610 article-title: Influence of dynamic flow conditions on adsorbed plasma protein corona and surface-induced thrombus generation on antifouling brushes publication-title: Biomaterials – volume: 14 start-page: 14779 year: 2020 end-page: 14789 ident: b0890 article-title: Interrogation of folic acid-functionalized nanomedicines: The regulatory roles of plasma proteins reexamined publication-title: ACS Nano – volume: 15 start-page: 5019 year: 2018 end-page: 5030 ident: b1140 article-title: Effects of protein corona on active and passive targeting of cyclic RGD peptide-functionalized PEGylation nanoparticles publication-title: Mol. Pharm. – volume: 9 start-page: 1 year: 2019 end-page: 10 ident: b0155 article-title: Molecular form and concentration of serum α2-macroglobulin in diabetes publication-title: Sci. Rep. – volume: 104 start-page: 2050 year: 2007 end-page: 2055 ident: b0035 article-title: Understanding the nanoparticle–protein corona using methods to quantify exchange rates and affinities of proteins for nanoparticles publication-title: Proc. Natl. Acad. Sci. – volume: 11 start-page: 888 year: 2021 ident: b0065 article-title: Hard and soft protein corona of nanomaterials: analysis and relevance publication-title: Nanomaterials – volume: 119 start-page: 25482 year: 2015 end-page: 25492 ident: b0280 article-title: Protein identity and environmental parameters determine the final physicochemical properties of protein-coated metal nanoparticles publication-title: The Journal of Physical Chemistry C – volume: 175 start-page: 1 year: 2021 end-page: 18 ident: b0270 article-title: Biological effects of formation of protein corona onto nanoparticles publication-title: Int. J. Biol. Macromol. – volume: 16 start-page: 617 year: 2021 end-page: 629 ident: b0075 article-title: Environmental dimensions of the protein corona publication-title: Nat. Nanotechnol. – volume: 16 start-page: 1180 year: 2021 end-page: 1194 ident: b0040 article-title: The ancillary effects of nanoparticles and their implications for nanomedicine publication-title: Nat. Nanotechnol. – volume: 161 start-page: 1552 year: 2020 end-page: 1558 ident: b0165 article-title: Antithrombin III-mediated blood coagulation inhibitory activity of chitosan sulfate derivatized with different functional groups publication-title: Int. J. Biol. Macromol. – volume: 115 start-page: 209 year: 2018 end-page: 216 ident: b0570 article-title: Protein corona in response to flow: Effect on protein concentration and structure publication-title: Biophys. J. – volume: 30 start-page: 1588 year: 2014 end-page: 1598 ident: b0275 article-title: pH-dependent interaction and resultant structures of silica nanoparticles and lysozyme protein publication-title: Langmuir – start-page: 112 year: 1995 end-page: 128 ident: b0520 article-title: (Eds.), The vroman effect, in: Proteins at Interfaces II – volume: 10 start-page: 472 year: 2015 end-page: 479 ident: b1135 article-title: Mapping protein binding sites on the biomolecular corona of nanoparticles publication-title: Nat. Nanotechnol. – volume: 8 start-page: 3107 year: 2014 end-page: 3122 ident: b1035 article-title: Nanoparticles for imaging, sensing, and therapeutic intervention publication-title: ACS Nano – volume: 29 start-page: 6485 year: 2013 end-page: 6494 ident: b0670 article-title: Time evolution of nanoparticle–protein corona in human plasma: Relevance for targeted drug delivery publication-title: Langmuir – volume: 11 start-page: 3262 year: 2017 end-page: 3273 ident: b0685 article-title: Unveiling the in vivo protein corona of circulating leukocyte-like carriers publication-title: ACS Nano – volume: 294 start-page: 7269 year: 2019 end-page: 7282 ident: b0230 article-title: Myoglobin induces mitochondrial fusion, thereby inhibiting breast cancer cell proliferation publication-title: J. Biol. Chem. – volume: 3 start-page: 2520 year: 2021 end-page: 2529 ident: b0475 article-title: A water-soluble photothermal host–guest complex with pH-sensitive superlarge redshift absorption publication-title: CCS Chemistry – volume: 10 start-page: 4520 year: 2019 ident: b0305 article-title: Tailoring the component of protein corona via simple chemistry publication-title: Nat. Commun. – volume: 16 start-page: 2000285 year: 2020 ident: b0345 article-title: The influence of nanoparticle shape on protein corona formation publication-title: Small – volume: 7 start-page: 20568 year: 2015 end-page: 20575 ident: b0840 article-title: Protein corona influences cellular uptake of gold nanoparticles by phagocytic and nonphagocytic cells in a size-dependent manner publication-title: ACS Appl. Mater. Interfaces – volume: 588 year: 2020 ident: b0415 article-title: PEG shedding-rate-dependent blood clearance of PEGylated lipid nanoparticles in mice: Faster PEG shedding attenuates anti-PEG IgM production publication-title: Int. J. Pharm. – volume: 9 start-page: 530 year: 2021 ident: b0410 article-title: Non-immunotherapy application of LNP-mRNA: Maximizing efficacy and safety publication-title: Biomedicines – volume: 39 start-page: 881 year: 2015 end-page: 890 ident: b0665 article-title: Effect of the surface modification, size, and shape on cellular uptake of nanoparticles publication-title: Cell Biol. Int. – volume: 4 start-page: 3623 year: 2010 end-page: 3632 ident: b0525 article-title: Time evolution of the nanoparticle protein corona publication-title: ACS Nano – volume: 9 start-page: 2480 year: 2018 ident: b1000 article-title: Revealing the immune perturbation of black phosphorus nanomaterials to macrophages by understanding the protein corona publication-title: Nat. Commun. – volume: 8 start-page: 166 year: 2020 ident: b0055 article-title: Recent advances in understanding the protein corona of nanoparticles and in the formulation of “Stealthy” nanomaterials publication-title: Front. Bioeng. Biotechnol. – volume: 10 start-page: 317 year: 2002 end-page: 325 ident: b0960 article-title: Apolipoprotein-mediated transport of nanoparticle-bound drugs across the blood-brain barrier publication-title: J. Drug Targeting – volume: 10 start-page: 3561 year: 2019 ident: b0965 article-title: Brain-targeted drug delivery by manipulating protein corona functions publication-title: Nat. Commun. – volume: 13 start-page: 1603847 year: 2017 ident: b0930 article-title: The impact of protein corona formation on the macrophage cellular uptake and biodistribution of spherical nucleic acids publication-title: Small – volume: 18 start-page: 699 year: 2021 end-page: 713 ident: b0730 article-title: Diffusion and protein corona formation of lipid-based nanoparticles in the vitreous humor: Profiling and pharmacokinetic considerations publication-title: Mol. Pharm. – volume: 19 start-page: 4692 year: 2019 end-page: 4701 ident: b0655 article-title: Precision nanomedicine development based on specific opsonization of human cancer patient-personalized protein coronas publication-title: Nano Lett. – volume: 4 start-page: 349 year: 2012 end-page: 360 ident: b0245 article-title: The multiple facets of dermcidin in cell survival and host defense publication-title: J. Innate Immun. – volume: 41 start-page: 1835 year: 2021 end-page: 1850 ident: b0325 article-title: Protein corona formed in the gastrointestinal tract and its impacts on oral delivery of nanoparticles publication-title: Med. Res. Rev. – volume: 32 start-page: 2106353 year: 2022 ident: b0455 article-title: Modulating protein corona and materials–cell interactions with temperature-responsive materials publication-title: Adv. Funct. Mater. – volume: 15 start-page: 015008 year: 2013 ident: b0550 article-title: Fluid shear stress sensitizes cancer cells to receptor-mediated apoptosis via trimeric death receptors publication-title: New J. Phys. – volume: 27 start-page: 1070 year: 2014 end-page: 1077 ident: b0970 article-title: Binding of human serum albumin to single-walled carbon nanotubes activated neutrophils to increase production of hypochlorous acid, the oxidant capable of degrading nanotubes publication-title: Chem. Res. Toxicol. – volume: 599 start-page: 120407 year: 2021 ident: b0375 article-title: Evaluation of polymer choice on immunogenicity of chitosan coated PLGA NPs with surface-adsorbed pneumococcal protein antigen PspA4Pro publication-title: Int. J. Pharm. – reference: A.S. Abu Lila, T. Shimizu, T. Ishida (Eds.), 3-PEGylation and anti-PEG antibodies, in: A. Parambath (Ed.) Engineering of Biomaterials for Drug Delivery Systems, Woodhead Publishing, Cambridge, 2018, pp. 51-68. – volume: 7 start-page: 13958 year: 2015 end-page: 13966 ident: b0555 article-title: The biomolecular corona of nanoparticles in circulating biological media publication-title: Nanoscale – volume: 58 start-page: 12787 year: 2019 end-page: 12794 ident: b0050 article-title: Possibilities and limitations of different separation techniques for the analysis of the protein corona publication-title: Angew. Chem. Int. Ed. – volume: 12 start-page: 677 year: 2001 end-page: 682 ident: b0150 article-title: Fibrinogen: Structure, function, and surface interactions publication-title: J. Vasc. Interv. Radiol. – volume: 22 start-page: 2641 year: 2021 end-page: 2648 ident: b0460 article-title: Abiotic stimuli-responsive protein affinity reagent for IgG publication-title: Biomacromolecules – volume: 176 start-page: 2808 year: 2019 end-page: 2824 ident: b0190 article-title: Histidine-rich glycoprotein ameliorates endothelial barrier dysfunction through regulation of NF-κB and MAPK signal pathway publication-title: Br. J. Pharmacol. – volume: 141 start-page: 70 year: 2019 end-page: 80 ident: b0320 article-title: Effect of nanoparticle size and PEGylation on the protein corona of PLGA nanoparticles publication-title: Eur. J. Pharm. Biopharm. – volume: 163 start-page: 212 year: 2021 end-page: 222 ident: b0370 article-title: Identification of main influencing factors on the protein corona composition of PLGA and PLA nanoparticles publication-title: Eur. J. Pharm. Biopharm. – volume: 8 start-page: 3474 year: 2018 end-page: 3489 ident: b0715 article-title: Drug-delivering-drug platform-mediated potent protein therapeutics via a non-endo-lysosomal route publication-title: Theranostics – volume: 10 start-page: 9094 year: 2018 end-page: 9103 ident: b0675 article-title: Ligand size and conformation affect the behavior of nanoparticles coated with in vitro and in vivo protein corona publication-title: ACS Appl. Mater. Interfaces – volume: 75 start-page: 295 year: 2016 end-page: 304 ident: b1130 article-title: Impact of protein pre-coating on the protein corona composition and nanoparticle cellular uptake publication-title: Biomaterials – volume: 99 start-page: 28 year: 2016 end-page: 51 ident: b0395 article-title: PEGylation as a strategy for improving nanoparticle-based drug and gene delivery publication-title: Adv. Drug Del. Rev. – volume: 12 start-page: 3137 year: 2017 ident: b0310 article-title: Protein corona: A new approach for nanomedicine design publication-title: Int. J. Nanomed. – volume: 196 start-page: 476 year: 1962 end-page: 477 ident: b0025 article-title: Effect of adsorbed proteins on the wettability of hydrophilic and hydrophobic solids publication-title: Nature – volume: 7 start-page: 6555 year: 2013 end-page: 6562 ident: b0440 article-title: Temperature: The “ignored” factor at the nanobio interface publication-title: ACS Nano – start-page: 1377 year: 2001 end-page: 1385 ident: b0435 publication-title: Harrisons principles of internal medicine mcgraw-hill – volume: 11 start-page: 18198 year: 2021 end-page: 18204 ident: b0450 article-title: Probing protein dissociation from gold nanoparticles and the influence of temperature from the protein corona formation mechanism publication-title: RSC Advances – volume: 3 start-page: 40 year: 2008 end-page: 47 ident: b0090 article-title: Protein-nanoparticle interactions publication-title: Nano Today – volume: 111 start-page: 651 year: 2008 end-page: 657 ident: b0590 article-title: Platelet-VWF complexes are preferred substrates of ADAMTS13 under fluid shear stress, Blood, The Journal of the American Society of publication-title: Hematology – volume: 35 start-page: 3455 year: 2014 end-page: 3466 ident: b0955 article-title: Blood protein coating of gold nanoparticles as potential tool for organ targeting publication-title: Biomaterials – reference: L. Rydén, Ceruloplasmin (Eds.), in: Copper proteins and copper enzymes, CRC Press, Boca Raton, 2018, pp. 37-100. – volume: 286 start-page: 938 year: 2017 end-page: 947 ident: b0680 article-title: The protein corona around nanoparticles facilitates stem cell labeling for clinical MR imaging publication-title: Radiology – volume: 100 start-page: 451 year: 2004 end-page: 455 ident: b1080 article-title: Pre-coating with serum albumin reduces receptor-mediated hepatic disposition of polystyrene nanosphere: Implications for rational design of nanoparticles publication-title: J. Controlled Release – volume: 16 start-page: 1907574 year: 2020 ident: b0045 article-title: Polymeric nanoparticles with neglectable protein corona publication-title: Small – volume: 10 start-page: 9664 year: 2020 ident: b0935 article-title: Controlling evolution of protein corona: A prosperous approach to improve chitosan-based nanoparticle biodistribution and half-life publication-title: Sci. Rep. – volume: 49 start-page: 21 year: 2002 end-page: 30 ident: b0650 article-title: Am Bisome: Liposomal formulation, structure, mechanism of action and pre-clinical experience publication-title: J. Antimicrob. Chemother. – volume: 14 start-page: 9587 year: 2019 end-page: 9602 ident: b1065 article-title: In vivo studies on pharmacokinetics, toxicity and immunogenicity of polyelectrolyte nanocapsules functionalized with two different polymers: Poly-L-glutamic acid or PEG publication-title: Int. J. Nanomed. – volume: 8 start-page: 772 year: 2013 end-page: 781 ident: b1100 article-title: Rapid formation of plasma protein corona critically affects nanoparticle pathophysiology publication-title: Nat. Nanotechnol. – volume: 7 start-page: 8978 year: 2015 end-page: 8994 ident: b0645 article-title: Personalized disease-specific protein corona influences the therapeutic impact of graphene oxide publication-title: Nanoscale – volume: 49 start-page: 6288 year: 2010 end-page: 6308 ident: b1040 article-title: Poly(ethylene glycol) in drug delivery: Pros and cons as well as potential alternatives publication-title: Angewandte Chemie-International Edition – volume: 92 start-page: 942 year: 2017 end-page: 952 ident: b0205 article-title: Circulating complement factor H–related proteins 1 and 5 correlate with disease activity in IgA nephropathy publication-title: Kidney Int. – volume: 24 start-page: 1630 year: 2022 end-page: 1637 ident: b0515 article-title: The corona of protein–gold nanoparticle systems: The role of ionic strength publication-title: PCCP – volume: 326 start-page: 164 year: 2020 end-page: 171 ident: b0015 article-title: Delivering the power of nanomedicine to patients today publication-title: J. Controlled Release – volume: 20 start-page: 137 year: 2019 end-page: 138 ident: b0160 article-title: Influence of body mass index and prealbumin levels on lung function in patients with spinal muscular atrophy: A pilot study publication-title: J. Clin. Neuromuscul. Dis. – volume: 5 start-page: 3531 year: 2005 end-page: 3536 ident: b0070 article-title: Plasma proteome database as a resource for proteomics research publication-title: Proteomics – volume: 13 start-page: 12577 year: 2021 end-page: 12586 ident: b0855 article-title: Stealthy nanoparticles protect endothelial barrier from leakiness by resisting the absorption of VE-cadherin publication-title: Nanoscale – volume: 3 start-page: 1900124 year: 2019 ident: b1070 article-title: Cancer-targeted nanomedicine: Overcoming the barrier of the protein corona publication-title: Adv. Ther. – volume: 9 start-page: 3169 year: 2015 end-page: 3177 ident: b0810 article-title: Elasticity of nanoparticles influences their blood circulation, phagocytosis, endocytosis, and targeting publication-title: ACS Nano – volume: 43 start-page: 1339 year: 2020 end-page: 1357 ident: b0005 article-title: Selected nanotechnologies and nanostructures for drug delivery, nanomedicine and cure publication-title: Bioprocess Biosystems Eng. – volume: 139 start-page: 3978 year: 2017 end-page: 3981 ident: b0420 article-title: Spatial mapping of protein adsorption on mesoporous silica nanoparticles by stochastic optical reconstruction microscopy publication-title: J. Am. Chem. Soc. – volume: 493 start-page: 334 year: 2017 end-page: 341 ident: b0485 article-title: Bovine serum albumin adsorption on SiO2 and TiO2 nanoparticle surfaces at circumneutral and acidic pH: A tale of two nano-bio surface interactions publication-title: J. Colloid Interface Sci. – volume: 129 start-page: 57 year: 2021 end-page: 72 ident: b0100 article-title: The protein corona and its effects on nanoparticle-based drug delivery systems publication-title: Acta Biomater. – volume: 20 start-page: 8903 year: 2020 end-page: 8911 ident: b0860 article-title: Enhanced cancer-targeted drug delivery using precoated nanoparticles publication-title: Nano Lett. – volume: 17 start-page: 1210 year: 2020 end-page: 1211 ident: b0175 article-title: Different domains of β2-glycoprotein I play a role in autoimmune pathogenesis publication-title: Cell. Mol. Immunol. – volume: 105 start-page: 14265 year: 2008 end-page: 14270 ident: b1095 article-title: Nanoparticle size and surface properties determine the protein corona with possible implications for biological impacts publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 5 start-page: 3693 year: 2011 end-page: 3700 ident: b1145 article-title: Protein corona-mediated mitigation of cytotoxicity of graphene oxide publication-title: ACS Nano – volume: 2 start-page: 1900 year: 2011 end-page: 1918 ident: b1060 article-title: Overcoming the PEG-addiction: Well-defined alternatives to PEG, from structure-property relationships to better defined therapeutics publication-title: Polym. Chem. – volume: 17 start-page: 126 year: 2001 end-page: 133 ident: b0135 article-title: Expression and purification of functional human α-1-antitrypsin from cultured plant cells publication-title: Biotechnol. Progr. – volume: 10 start-page: 7108 year: 2018 end-page: 7115 ident: b0660 article-title: Disease-related metabolites affect protein-nanoparticle interactions publication-title: Nanoscale – volume: 31 start-page: 9511 year: 2010 end-page: 9518 ident: b0445 article-title: Serum heat inactivation affects protein corona composition and nanoparticle uptake publication-title: Biomaterials – volume: 14 start-page: 260 year: 2019 end-page: 268 ident: b1025 article-title: Immunoglobulin deposition on biomolecule corona determines complement opsonization efficiency of preclinical and clinical nanoparticles publication-title: Nat. Nanotechnol. – volume: 39 start-page: 1620 year: 2011 end-page: 1631 ident: b0540 article-title: High fluid shear stress and spatial shear stress gradients affect endothelial proliferation, Survival, and Alignment publication-title: Ann. Biomed. Eng. – volume: 151 start-page: 27 year: 2018 end-page: 36 ident: b0630 article-title: Exosomes in lung cancer diagnosis and treatment. From the translating research into future clinical practice publication-title: Biochimie – volume: 177 year: 2021 ident: b0355 article-title: Non-spherical micro- and nanoparticles for drug delivery: Progress over 15 years publication-title: Adv. Drug Del. Rev. – volume: 7 start-page: 6819 year: 2015 end-page: 6827 ident: b0640 article-title: Gold nanoparticle-enabled blood test for early stage cancer detection and risk assessment publication-title: ACS Appl. Mater. Interfaces – volume: 31 start-page: 2100227 year: 2021 ident: b0980 article-title: Multi-responsive biodegradable cationic nanogels for highly efficient treatment of tumors publication-title: Adv. Funct. Mater. – volume: 19 start-page: 2557 year: 2019 end-page: 2567 ident: b0585 article-title: The biomolecular corona of gold nanoparticles in a controlled microfluidic environment publication-title: Lab on a Chip – volume: 64 start-page: 34 year: 2016 end-page: 42 ident: b0575 article-title: Modification of the protein corona–nanoparticle complex by physiological factors publication-title: Mater. Sci. Eng.: C – volume: 105 start-page: 14265 year: 2008 end-page: 14270 ident: b0300 article-title: Nanoparticle size and surface properties determine the protein corona with possible implications for biological impacts publication-title: Proc. Natl. Acad. Sci. – volume: 10 start-page: 1129 year: 2020 ident: b0315 article-title: Understanding the lipid and protein corona formation on different sized polymeric nanoparticles publication-title: Sci. Rep. – volume: 11 start-page: 4535 year: 2020 ident: b0695 article-title: Mapping and identification of soft corona proteins at nanoparticles and their impact on cellular association publication-title: Nat. Commun. – volume: 319 start-page: 371 year: 2020 end-page: 381 ident: b1015 article-title: Natural IgM dominates in vivo performance of liposomes publication-title: J. Controlled Release – volume: 117 year: 2020 ident: b0350 article-title: The influence of shape and charge on protein corona composition in common gold nanostructures publication-title: Mater. Sci. Eng.: C – volume: 13 start-page: 862 year: 2018 end-page: 869 ident: b1085 article-title: Pre-adsorption of antibodies enables targeting of nanocarriers despite a biomolecular corona publication-title: Nat. Nanotechnol. – volume: 15 start-page: 501 year: 2019 end-page: 518 ident: b0210 article-title: Apolipoprotein E and Alzheimer disease: Pathobiology and targeting strategies publication-title: Nat. Rev. Neurol. – volume: 6 start-page: 827 year: 2016 end-page: 836 ident: b0565 article-title: Preliminary protein corona formation stabilizes gold nanoparticles and improves deposition efficiency publication-title: Appl. Nanosci. – volume: 93 start-page: 8084 year: 2021 end-page: 8090 ident: b0625 article-title: High-fidelity and simultaneous sensing of endogenous mutant and wild p53 proteins for precise cancer diagnosis and drug screening publication-title: Anal. Chem. – volume: 137 start-page: 52 year: 2016 end-page: 58 ident: b1075 article-title: An environmental route of exposure affects the formation of nanoparticle coronas in blood plasma publication-title: J. Proteomics – volume: 9 start-page: 2982 year: 2018 ident: b1020 article-title: Enhanced immunocompatibility of ligand-targeted liposomes by attenuating natural IgM absorption publication-title: Nat. Commun. – volume: 113 start-page: 539 year: 2020 end-page: 545 ident: b0195 article-title: Plasminogen improves lung lesions and hypoxemia in patients with COVID-19 publication-title: QJM: Int. J. Med. – volume: 494 start-page: 430 year: 2015 end-page: 444 ident: b0880 article-title: Protein corona hampers targeting potential of MUC1 aptamer functionalized SN-38 core-shell nanoparticles publication-title: Int. J. Pharm. – volume: 18 start-page: 1357 year: 2010 end-page: 1364 ident: b1125 article-title: Targeted delivery of RNAi therapeutics with endogenous and exogenous ligand-based mechanisms publication-title: Mol. Ther. – volume: 272 start-page: 31333 year: 1997 end-page: 31339 ident: b0120 article-title: The effect of apolipoprotein A-II on the structure and function of apolipoprotein AI in a homogeneous reconstituted high density lipoprotein particle publication-title: J. Biol. Chem. – volume: 15 start-page: 1481 year: 2020 end-page: 1498 ident: b0850 article-title: A protein corona adsorbed to a bacterial magnetosome affects its cellular uptake publication-title: Int. J. Nanomed. – volume: 108 start-page: 16968 year: 2011 end-page: 16973 ident: b0985 article-title: Binding of blood proteins to carbon nanotubes reduces cytotoxicity publication-title: Proc. Natl. Acad. Sci. – volume: 50 start-page: 816 year: 2017 end-page: 821 ident: b0185 article-title: Complement factor C4 activation in patients with hereditary angioedema publication-title: Clin. Biochem. – volume: 370 start-page: 581 year: 2019 end-page: 592 ident: b1030 article-title: The interplay between blood proteins, complement, and macrophages on nanomedicine performance and responses publication-title: J. Pharmacol. Exp. Ther. – volume: 132 start-page: 23876 year: 2020 end-page: 23885 ident: b0260 article-title: Quantitative protein corona composition and dynamics on carbon nanotubes in biological environments publication-title: Angew. Chem. – volume: 5 start-page: 378 year: 2017 end-page: 387 ident: b1150 article-title: Personalized protein corona on nanoparticles and its clinical implications publication-title: Biomater. Sci. – reference: S. Jafari, Z. Izadi, L. Alaei, M. Jaymand, H. Samadian, V. ollah Kashani, H. Derakhshankhah, P. Hayati, F. Noori, K. Mansouri, Human plasma protein corona decreases the toxicity of pillar-layer metal organic framework, Sci. Rep., 10 (2020) 1-14. – volume: 11 start-page: 372 year: 2016 end-page: 377 ident: b0945 article-title: Protein adsorption is required for stealth effect of poly(ethylene glycol)- and poly(phosphoester)-coated nanocarriers publication-title: Nat. Nanotechnol. – volume: 141 start-page: 709 year: 2021 end-page: 724 ident: b0620 article-title: Plasma p-tau231: A new biomarker for incipient Alzheimer’s disease pathology publication-title: Acta Neuropathol. – volume: 22 start-page: 2348 year: 2003 end-page: 2359 ident: b0225 article-title: Crystal structure of the CUB1-EGF-CUB2 region of mannose-binding protein associated serine protease-2 publication-title: EMBO J. – volume: 160 start-page: 117 year: 2012 end-page: 134 ident: b1045 article-title: Doxil (R)-The first FDA-approved nano-drug: Lessons learned publication-title: J. Controlled Release – volume: 14 start-page: 1801219 year: 2018 ident: b0990 article-title: Protein corona mediated uptake and cytotoxicity of silver nanoparticles in mouse embryonic fibroblast publication-title: Small – volume: 7 start-page: 10960 year: 2013 end-page: 10970 ident: b1005 article-title: Differential roles of the protein corona in the cellular uptake of nanoporous polymer particles by monocyte and macrophage cell lines publication-title: ACS Nano – volume: 111 year: 2020 ident: b0340 article-title: Effects of gold nanoparticle morphologies on interactions with proteins publication-title: Mater. Sci. Eng.: C – volume: 21 start-page: 1219 year: 2020 ident: b0240 article-title: Multifaceted physiological roles of adiponectin in inflammation and diseases publication-title: Int. J. Mol. Sci. – volume: 13 start-page: 37 year: 2019 end-page: 43 ident: b0830 article-title: Impact of protein-nanoparticle interactions on gastrointestinal fate of ingested nanoparticles: Not just simple protein corona effects publication-title: NanoImpact – volume: 196 start-page: 245 year: 2000 end-page: 249 ident: b0775 article-title: Nanoparticles with decreasing surface hydrophobicities: Influence on plasma protein adsorption publication-title: Int. J. Pharm. – volume: 14 start-page: 1159 year: 2008 end-page: 1163 ident: b0220 article-title: Abnormalities of prothrombin: A review of the pathophysiology, diagnosis, and treatment publication-title: Haemophilia – volume: 57 start-page: 5548 year: 2018 end-page: 5553 ident: b0800 article-title: Hydrophilicity regulates the stealth properties of polyphosphoester-coated nanocarriers publication-title: Angew. Chem. Int. Ed. Engl. – volume: 4 start-page: 8852 year: 2019 end-page: 8861 ident: b0425 article-title: Protein corona over mesoporous silica nanoparticles: Influence of the pore diameter on competitive adsorption and application to prostate cancer diagnostics publication-title: ACS Omega – volume: 24 start-page: 1409 year: 2003 end-page: 1418 ident: b0940 article-title: Competitive adsorption of serum proteins at microparticles affects phagocytosis by dendritic cells publication-title: Biomaterials – volume: 9 start-page: 4548 year: 2018 ident: b0870 article-title: Cloaking nanoparticles with protein corona shield for targeted drug delivery publication-title: Nat. Commun. – volume: 8 start-page: 6948 year: 2016 end-page: 6957 ident: b0530 article-title: Time-evolution of in vivo protein corona onto blood-circulating PEGylated liposomal doxorubicin (DOXIL) nanoparticles publication-title: Nanoscale – volume: 67 start-page: 101 year: 2015 end-page: 107 ident: b0125 article-title: The role of complement factor C3 in lipid metabolism publication-title: Mol. Immunol. – volume: 14 start-page: 1084 year: 2019 end-page: 1087 ident: b1120 article-title: The Onpattro story and the clinical translation of nanomedicines containing nucleic acid-based drugs publication-title: Nat. Nanotechnol. – volume: 16 start-page: 3021 year: 2021 end-page: 3040 ident: b0825 article-title: Are smaller nanoparticles always better? Understanding the biological effect of size-dependent silver nanoparticle aggregation under biorelevant conditions publication-title: Int. J. Nanomed. – volume: 9 start-page: 20 year: 2011 ident: b0635 article-title: A facile nanoparticle immunoassay for cancer biomarker discovery publication-title: J. Nanobiotechnol. – volume: 319 start-page: 407 year: 2020 end-page: 415 ident: b1110 article-title: Transferrin-binding peptide functionalized polymersomes mediate targeted doxorubicin delivery to colorectal cancer in vivo publication-title: J. Control. Release – volume: 95 start-page: 733 year: 2011 end-page: 745 ident: b0600 article-title: The effects of shear flow on protein structure and function publication-title: Biopolymers – volume: 505 start-page: 1165 year: 2017 end-page: 1171 ident: b0285 article-title: Hemoglobin bioconjugates with surface-protected gold nanoparticles in aqueous media: The stability depends on solution pH and protein properties publication-title: J. Colloid Interface Sci. – volume: 105 start-page: 305 year: 2005 end-page: 317 ident: b1055 article-title: Accelerated blood clearance of PEGylated liposomes following preceding liposome injection: Effects of lipid dose and PEG surface-density and chain length of the first-dose liposomes publication-title: J. Controlled Release – volume: 22 start-page: 1695 year: 2021 end-page: 1705 ident: b0495 article-title: Metal-free polymer-based affinity medium for selective purification of his6-tagged proteins publication-title: Biomacromolecules – volume: 7 start-page: 779 year: 2012 end-page: 786 ident: b0910 article-title: Biomolecular coronas provide the biological identity of nanosized materials publication-title: Nature Nanotech – volume: 98 start-page: 2133 year: 2018 end-page: 2223 ident: b0235 article-title: Mechanisms of insulin action and insulin resistance publication-title: Physiol. Rev. – volume: 2019 start-page: 5410657 year: 2019 ident: b0215 article-title: Alpha-2-macroglobulin, a hypochlorite-regulated chaperone and immune system modulator publication-title: Oxid. Med. Cell. Longev. – volume: 170 start-page: 353 year: 2021 end-page: 368 ident: b0200 article-title: Fibronectin in development and wound healing publication-title: Adv. Drug Del. Rev. – volume: 11 start-page: 23259 year: 2019 end-page: 23267 ident: b0360 article-title: Surface roughness influences the protein corona formation of glycosylated nanoparticles and alter their cellular uptake publication-title: Nanoscale – volume: 6 start-page: 39 year: 2011 end-page: 44 ident: b1010 article-title: Nanoparticle-induced unfolding of fibrinogen promotes Mac-1 receptor activation and inflammation publication-title: Nat. Nanotechnol. – volume: 12 start-page: 387 year: 2017 end-page: 393 ident: b0615 article-title: Complement proteins bind to nanoparticle protein corona and undergo dynamic exchange in vivo publication-title: Nat. Nanotechnol. – volume: 333 start-page: 352 year: 2021 end-page: 361 ident: b0875 article-title: Unmasking CSF protein corona: Effect on targeting capacity of nanoparticles publication-title: J. Controlled Release – volume: 554 start-page: 362 year: 2019 end-page: 375 ident: b0490 article-title: pH-dependent adsorption of α-amino acids, lysine, glutamic acid, serine and glycine, on TiO2 nanoparticle surfaces publication-title: J. Colloid Interface Sci. – volume: 13 start-page: 49 year: 2022 ident: b0255 article-title: The need for improved methodology in protein corona analysis publication-title: Nat. Commun. – volume: 18 start-page: 4341 year: 2021 end-page: 4353 ident: b0885 article-title: Unraveling the effect of breast cancer patients’ plasma on the targeting ability of folic acid-modified chitosan nanoparticles publication-title: Mol. Pharm. – volume: 61 start-page: 428 year: 2009 end-page: 437 ident: b0925 article-title: Nanoparticle interaction with plasma proteins as it relates to particle biodistribution, biocompatibility and therapeutic efficacy publication-title: Adv. Drug Del. Rev. – volume: 606 start-page: 1737 year: 2022 end-page: 1744 ident: b0290 article-title: Zhao, Influence of nanoparticle mechanical property on protein corona formation publication-title: J. Colloid Interface Sci. – volume: 13 start-page: 163 year: 1996 end-page: 167 ident: b0500 article-title: Estimation of the increase in solubility of drugs as a function of bile salt concentration publication-title: Pharm. Res. – volume: 46 start-page: 547 year: 2000 end-page: 552 ident: b0140 article-title: Haptoglobin: Function and polymorphism publication-title: Clin. Lab. – volume: 7 start-page: 3253 year: 2013 end-page: 3263 ident: b0725 article-title: Polymer-coated nanoparticles interacting with proteins and cells: focusing on the sign of the net charge publication-title: ACS Nano – volume: 61 start-page: 428 year: 2009 end-page: 437 ident: b0705 article-title: Nanoparticle interaction with plasma proteins as it relates to particle biodistribution, biocompatibility and therapeutic efficacy publication-title: Adv Drug Deliv Rev – volume: 20 start-page: 4133 year: 2018 end-page: 4168 ident: b0080 article-title: Changing environments and biomolecule coronas: Consequences and challenges for the design of environmentally acceptable engineered nanoparticles publication-title: Green Chem. – volume: 12 start-page: 3137 year: 2017 end-page: 3151 ident: b0740 article-title: Protein corona: A new approach for nanomedicine design publication-title: Int J Nanomedicine – volume: 49 start-page: 1200 year: 2016 end-page: 1210 ident: b0465 article-title: Tuning the protein corona of hydrogel nanoparticles: the synthesis of abiotic protein and peptide affinity reagents publication-title: Acc. Chem. Res. – volume: 148 start-page: 146 year: 2019 end-page: 180 ident: b0805 article-title: Nanoformulation properties, characterization, and behavior in complex biological matrices: Challenges and opportunities for brain-targeted drug delivery applications and enhanced translational potential publication-title: Adv. Drug Del. Rev. – volume: 69 start-page: 12 year: 1958 end-page: 19 ident: b0030 article-title: The charged groups at the interface of some blood cells publication-title: Biochem. J – reference: P. Ponka, C. Beaumont, D.R. Richardson (Eds.), Function and regulation of transferrin and ferritin, in: Semin. Hematol., Elsevier, Amsterdam, 1998, pp. 35-54. – volume: 6 start-page: 251 year: 1988 end-page: 281 ident: b0110 article-title: Structure and function of human and murine receptors for IgG publication-title: Annu. Rev. Immunol. – volume: 12 start-page: 48284 year: 2020 end-page: 48295 ident: b0295 article-title: Protein nanoparticle charge and hydrophobicity govern protein corona and macrophage uptake publication-title: ACS Appl. Mater. Interfaces – volume: 28 start-page: 88 year: 2017 end-page: 97 ident: b0690 article-title: Size-dependent protein-nanoparticle interactions in citrate-stabilized gold nanoparticles: The emergence of the protein corona publication-title: Bioconjugate Chem. – volume: 30 start-page: 1923 year: 2019 end-page: 1937 ident: b0750 article-title: Understanding the chemical nature of nanoparticle-protein interactions publication-title: Bioconjug. Chem. – volume: 7 start-page: 11770 year: 2016 ident: b0700 article-title: Dynamic protein coronas revealed as a modulator of silver nanoparticle sulphidation in vitro publication-title: Nat. Commun. – volume: 143 start-page: 3 year: 2019 end-page: 21 ident: b0020 article-title: Effect of physicochemical and surface properties on in vivo fate of drug nanocarriers publication-title: Adv. Drug Del. Rev. – volume: 33 start-page: 443 year: 2011 end-page: 456 ident: b0595 article-title: Effects of shear on proteins in solution publication-title: Biotechnol. Lett – volume: 9 start-page: 2405 year: 2015 end-page: 2419 ident: b1105 article-title: Corona-directed nucleic acid delivery into hepatic stellate cells for liver fibrosis therapy publication-title: ACS Nano – volume: 153 start-page: 263 year: 2017 end-page: 271 ident: b0560 article-title: Influence of dynamic flow environment on nanoparticle-protein corona: From protein patterns to uptake in cancer cells publication-title: Colloids Surf. B. Biointerfaces – volume: 3 start-page: 1900124 year: 2020 ident: b0060 article-title: Cancer-targeted nanomedicine: overcoming the barrier of the protein corona publication-title: Adv. Ther. – volume: 7 start-page: 5573 year: 2021 end-page: 5584 ident: b0845 article-title: Correlating corona composition and cell uptake to identify proteins affecting nanoparticle entry into endothelial cells publication-title: ACS Biomater. Sci. Eng. – volume: 9 start-page: 8142 year: 2015 end-page: 8156 ident: b1115 article-title: In vivo biomolecule corona around blood-circulating, clinically used and antibody-targeted lipid bilayer nanoscale vesicles publication-title: ACS Nano – volume: 9 start-page: 6996 year: 2015 end-page: 7008 ident: b0795 article-title: Surface functionalization of nanoparticles with polyethylene glycol: Effects on protein adsorption and cellular uptake publication-title: ACS Nano – volume: 25 start-page: 7 year: 2018 end-page: 11 ident: b0770 article-title: Effect of surface charge and hydrophobicity on phospholipid-nanoparticle corona formation: A molecular dynamics simulation study, Colloid Interface publication-title: Sci. Commun. – volume: 112 start-page: 7779 year: 2015 end-page: 7784 ident: b1050 article-title: Long-circulating siRNA nanoparticles for validating prohibitin1-targeted non-small cell lung cancer treatment publication-title: Proc. Natl. Acad. Sci. USA – volume: 8 start-page: 503 year: 2014 end-page: 513 ident: b0905 article-title: Impact of protein modification on the protein corona on nanoparticles and nanoparticle–cell interactions publication-title: ACS Nano – volume: 10 start-page: 1256 year: 2018 end-page: 1264 ident: b0710 article-title: In vivo formation of protein corona on gold nanoparticles. The effect of their size and shape publication-title: Nanoscale – volume: 20 start-page: 321 year: 2020 end-page: 334 ident: b0010 article-title: Enhancing cancer immunotherapy with nanomedicine publication-title: Nat. Rev. Immunol. – volume: 154-155 start-page: 151 year: 2020 end-page: 162 ident: b0400 article-title: When liposomes met antibodies: Drug delivery and beyond publication-title: Adv. Drug Del. Rev. – volume: 345 start-page: 325 year: 2010 end-page: 331 ident: b0470 article-title: Temperature-responsive polymer-brush constructed on a glass substrate by atom transfer radical polymerization publication-title: J. Colloid Interface Sci. – volume: 21 start-page: 2002 year: 2022 end-page: 2031 ident: b0580 article-title: Formation and biological effects of protein corona for food-related nanoparticles publication-title: Compr. Rev. Food Sci. Food Saf. – volume: 118 start-page: 303 year: 2019 end-page: 314 ident: b0815 article-title: Role of protein corona in the biological effect of nanomaterials: Investigating methods, TrAC publication-title: Trends Anal. Chem. – volume: 29 start-page: 3923 year: 2018 end-page: 3934 ident: b0820 article-title: Protein corona formed from different blood plasma proteins affects the colloidal stability of nanoparticles differently publication-title: Bioconjugate Chem. – reference: A. Gressner, O. Gressner (Eds.), α1-Antichymotrypsin, in: Lexikon der Medizinischen Laboratoriumsdiagnostik, Springer, Berlin, 2019, pp. 140-140. – volume: 47 start-page: 2651 year: 2014 end-page: 2659 ident: b0735 article-title: Nanoparticle-cell interactions: Molecular structure of the protein corona and cellular outcomes publication-title: Acc. Chem. Res. – volume: 41 start-page: 853 year: 2000 end-page: 872 ident: b0115 article-title: Apolipoprotein AI: Structure–function relationships publication-title: J. Lipid Res. – volume: 11 start-page: 4357 year: 2016 end-page: 4371 ident: b0995 article-title: Defect density in multiwalled carbon nanotubes influences ovalbumin adsorption and promotes macrophage activation and CD4(+) T-cell proliferation publication-title: Int. J. Nanomed. – volume: 5 start-page: 7503 year: 2011 end-page: 7509 ident: b0755 article-title: The evolution of the protein corona around nanoparticles: A test study publication-title: ACS Nano – volume: 194 start-page: 654 year: 2022 end-page: 665 ident: b0510 article-title: The influence of pH and ionic strength on the interactions between human serum albumin and magnetic iron oxide nanoparticles publication-title: Int. J. Biol. Macromol. – volume: 1163 start-page: 122504 year: 2021 ident: b0085 article-title: Proteomic fingerprinting of protein corona formed on PEGylated multi-walled carbon nanotubes publication-title: J. Chromatogr. B – volume: 6 start-page: 713 year: 2012 end-page: 723 ident: b0765 article-title: Size and surface charge significantly influence the toxicity of silica and dendritic nanoparticles publication-title: Nanotoxicology – volume: 6 start-page: 1900411 year: 2019 ident: b0480 article-title: AFM study of pH-dependent adhesion of single protein to TiO2 surface publication-title: Adv. Mater. Interfaces – volume: 31 start-page: 1575 year: 2020 end-page: 1585 ident: b0895 article-title: The protein corona does not influence receptor-mediated targeting of virus-like particles publication-title: Bioconjugate Chem. – volume: 80 start-page: 773 year: 2014 end-page: 781 ident: b0250 article-title: Insulin-like growth factor-II: Its role in metabolic and endocrine disease publication-title: Clin. Endocrinol. (Oxf.) – volume: 15 start-page: 5783 year: 2020 ident: b0095 article-title: Protein–nanoparticle interaction: Corona formation and conformational changes in proteins on nanoparticles publication-title: Int. J. Nanomed. – volume: 307 start-page: 93 year: 2006 end-page: 102 ident: b0920 article-title: Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles publication-title: Int. J. Pharm. – volume: 104 start-page: 2050 year: 2007 end-page: 2055 ident: b0790 article-title: Understanding the nanoparticle-protein corona using methods to quantify exchange rates and affinities of proteins for nanoparticles publication-title: Proc. Natl. Acad. Sci. USA – volume: 17 start-page: 197 year: 2015 ident: b0835 article-title: The effect of protein corona on doxorubicin release from the magnetic mesoporous silica nanoparticles with polyethylene glycol coating publication-title: J. Nanopart. Res. – volume: 37 start-page: 161 year: 1985 end-page: 245 ident: b0105 article-title: Serum albumin publication-title: Adv. Protein Chem. – volume: 21 start-page: 297 year: 2002 end-page: 306 ident: b0145 article-title: Hemopexin: Structure, function, and regulation publication-title: DNA Cell Biol. – volume: 304 start-page: 102 year: 2019 end-page: 110 ident: b0335 article-title: Characterizing the protein corona of sub-10 nm nanoparticles publication-title: J. Controlled Release – volume: 40 start-page: 603 year: 1969 end-page: 614 ident: b0535 article-title: Measurement of instantaneous blood flow velocity and pressure in conscious man with a catheter-tip velocity probe publication-title: Circulation – volume: 8 start-page: 46 year: 2015 end-page: 51 ident: b0545 article-title: Capillary blood flow imaging within human finger cuticle using optical microangiography publication-title: J. Biophotonics – volume: 31 year: 2019 ident: b0380 article-title: The human in vivo biomolecule corona onto pegylated liposomes: A proof-of-concept clinical study publication-title: Adv. Mater. – volume: 12 start-page: 73 year: 2022 ident: b0605 article-title: Endogenous nitric oxide-releasing microgel coating prevents clot formation on oxygenator fibers exposed to in vitro blood flow publication-title: Membranes – volume: 21 start-page: 2124 year: 2021 end-page: 2131 ident: b0265 article-title: Deciphering protein corona by scFv-based affinity chromatography publication-title: Nano Lett. – volume: 6 start-page: 5845 year: 2012 end-page: 5857 ident: b0915 article-title: Effects of the presence or absence of a protein corona on silica nanoparticle uptake and impact on cells publication-title: ACS Nano – volume: 14 start-page: 1801451 year: 2018 ident: b0720 article-title: Size, shape, and protein corona determine cellular uptake and removal mechanisms of gold nanoparticles publication-title: Small – volume: 10 start-page: 332 year: 2019 ident: b0950 article-title: Antibody-dependent cellular phagocytosis in antiviral immune responses publication-title: Front. Immunol. – volume: 1 start-page: 102 year: 2014 end-page: 105 ident: b0785 article-title: Protein coronas suppress the hemolytic activity of hydrophilic and hydrophobic nanoparticles publication-title: Materials Horizons – volume: 12 start-page: 5834 year: 2020 end-page: 5847 ident: b1090 article-title: Amphoteric natural starch-coated polymer nanoparticles with excellent protein corona-free and targeting properties publication-title: Nanoscale – volume: 7 start-page: 914 year: 2007 end-page: 920 ident: b0365 article-title: Systematic investigation of the thermodynamics of HSA adsorption to N-iso-propylacrylamide/N-tert-butylacrylamide copolymer nanoparticles. Effects of particle size and hydrophobicity publication-title: Nano Lett. – volume: 8 start-page: 777 year: 2017 ident: b0390 article-title: Mechanistic understanding of in vivo protein corona formation on polymeric nanoparticles and impact on pharmacokinetics publication-title: Nat. Commun. – volume: 15 start-page: 5783 year: 2020 end-page: 5802 ident: b0745 article-title: Protein-nanoparticle interaction: Corona formation and conformational changes in proteins on nanoparticles publication-title: Int. J. Nanomed. – volume: 12 start-page: 387 year: 2017 end-page: 393 ident: b0900 article-title: Complement proteins bind to nanoparticle protein corona and undergo dynamic exchange in vivo publication-title: Nat. Nanotechnol. – volume: 274 start-page: 120888 year: 2021 ident: b0865 article-title: The protein corona hampers the transcytosis of transferrin-modified nanoparticles through blood–brain barrier and attenuates their targeting ability to brain tumor publication-title: Biomaterials – volume: 10 start-page: 4421 year: 2016 end-page: 4430 ident: b0780 article-title: Regulation of macrophage recognition through the interplay of nanoparticle surface functionality and protein corona publication-title: ACS Nano – volume: 5 start-page: 471 year: 2000 ident: b0430 article-title: Fever and the heat shock response: Distinct, partially overlapping processes publication-title: Cell Stress Chaperones – volume: 12 start-page: 3137 year: 2017 ident: 10.1016/j.addr.2022.114356_b0310 article-title: Protein corona: A new approach for nanomedicine design publication-title: Int. J. Nanomed. doi: 10.2147/IJN.S129300 – volume: 16 start-page: 1180 year: 2021 ident: 10.1016/j.addr.2022.114356_b0040 article-title: The ancillary effects of nanoparticles and their implications for nanomedicine publication-title: Nat. Nanotechnol. doi: 10.1038/s41565-021-01017-9 – volume: 17 start-page: 197 year: 2015 ident: 10.1016/j.addr.2022.114356_b0835 article-title: The effect of protein corona on doxorubicin release from the magnetic mesoporous silica nanoparticles with polyethylene glycol coating publication-title: J. Nanopart. Res. doi: 10.1007/s11051-015-3008-3 – volume: 21 start-page: 2124 year: 2021 ident: 10.1016/j.addr.2022.114356_b0265 article-title: Deciphering protein corona by scFv-based affinity chromatography publication-title: Nano Lett. doi: 10.1021/acs.nanolett.0c04806 – volume: 12 start-page: 5834 issue: 10 year: 2020 ident: 10.1016/j.addr.2022.114356_b1090 article-title: Amphoteric natural starch-coated polymer nanoparticles with excellent protein corona-free and targeting properties publication-title: Nanoscale doi: 10.1039/C9NR09405A – volume: 7 start-page: 3253 issue: 4 year: 2013 ident: 10.1016/j.addr.2022.114356_b0725 article-title: Polymer-coated nanoparticles interacting with proteins and cells: focusing on the sign of the net charge publication-title: ACS Nano doi: 10.1021/nn3059295 – volume: 28 start-page: 88 issue: 1 year: 2017 ident: 10.1016/j.addr.2022.114356_b0690 article-title: Size-dependent protein-nanoparticle interactions in citrate-stabilized gold nanoparticles: The emergence of the protein corona publication-title: Bioconjugate Chem. doi: 10.1021/acs.bioconjchem.6b00575 – volume: 14 start-page: 1801451 issue: 42 year: 2018 ident: 10.1016/j.addr.2022.114356_b0720 article-title: Size, shape, and protein corona determine cellular uptake and removal mechanisms of gold nanoparticles publication-title: Small doi: 10.1002/smll.201801451 – volume: 160 start-page: 117 year: 2012 ident: 10.1016/j.addr.2022.114356_b1045 article-title: Doxil (R)-The first FDA-approved nano-drug: Lessons learned publication-title: J. Controlled Release doi: 10.1016/j.jconrel.2012.03.020 – volume: 493 start-page: 334 year: 2017 ident: 10.1016/j.addr.2022.114356_b0485 article-title: Bovine serum albumin adsorption on SiO2 and TiO2 nanoparticle surfaces at circumneutral and acidic pH: A tale of two nano-bio surface interactions publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2017.01.011 – volume: 10 start-page: 3561 year: 2019 ident: 10.1016/j.addr.2022.114356_b0965 article-title: Brain-targeted drug delivery by manipulating protein corona functions publication-title: Nat. Commun. doi: 10.1038/s41467-019-11593-z – volume: 14 start-page: 260 issue: 3 year: 2019 ident: 10.1016/j.addr.2022.114356_b1025 article-title: Immunoglobulin deposition on biomolecule corona determines complement opsonization efficiency of preclinical and clinical nanoparticles publication-title: Nat. Nanotechnol. doi: 10.1038/s41565-018-0344-3 – volume: 141 start-page: 709 year: 2021 ident: 10.1016/j.addr.2022.114356_b0620 article-title: Plasma p-tau231: A new biomarker for incipient Alzheimer’s disease pathology publication-title: Acta Neuropathol. doi: 10.1007/s00401-021-02275-6 – volume: 333 start-page: 352 year: 2021 ident: 10.1016/j.addr.2022.114356_b0875 article-title: Unmasking CSF protein corona: Effect on targeting capacity of nanoparticles publication-title: J. Controlled Release doi: 10.1016/j.jconrel.2021.04.001 – volume: 13 start-page: 37 year: 2019 ident: 10.1016/j.addr.2022.114356_b0830 article-title: Impact of protein-nanoparticle interactions on gastrointestinal fate of ingested nanoparticles: Not just simple protein corona effects publication-title: NanoImpact doi: 10.1016/j.impact.2018.12.002 – volume: 196 start-page: 476 year: 1962 ident: 10.1016/j.addr.2022.114356_b0025 article-title: Effect of adsorbed proteins on the wettability of hydrophilic and hydrophobic solids publication-title: Nature doi: 10.1038/196476a0 – volume: 196 start-page: 245 issue: 2 year: 2000 ident: 10.1016/j.addr.2022.114356_b0775 article-title: Nanoparticles with decreasing surface hydrophobicities: Influence on plasma protein adsorption publication-title: Int. J. Pharm. doi: 10.1016/S0378-5173(99)00432-9 – volume: 326 start-page: 164 year: 2020 ident: 10.1016/j.addr.2022.114356_b0015 article-title: Delivering the power of nanomedicine to patients today publication-title: J. Controlled Release doi: 10.1016/j.jconrel.2020.07.007 – volume: 58 start-page: 12787 year: 2019 ident: 10.1016/j.addr.2022.114356_b0050 article-title: Possibilities and limitations of different separation techniques for the analysis of the protein corona publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201902323 – volume: 100 start-page: 451 year: 2004 ident: 10.1016/j.addr.2022.114356_b1080 article-title: Pre-coating with serum albumin reduces receptor-mediated hepatic disposition of polystyrene nanosphere: Implications for rational design of nanoparticles publication-title: J. Controlled Release doi: 10.1016/j.jconrel.2004.07.028 – volume: 24 start-page: 1630 issue: 3 year: 2022 ident: 10.1016/j.addr.2022.114356_b0515 article-title: The corona of protein–gold nanoparticle systems: The role of ionic strength publication-title: PCCP doi: 10.1039/D1CP04574A – volume: 20 start-page: 8903 issue: 12 year: 2020 ident: 10.1016/j.addr.2022.114356_b0860 article-title: Enhanced cancer-targeted drug delivery using precoated nanoparticles publication-title: Nano Lett. doi: 10.1021/acs.nanolett.0c03982 – volume: 11 start-page: 372 year: 2016 ident: 10.1016/j.addr.2022.114356_b0945 article-title: Protein adsorption is required for stealth effect of poly(ethylene glycol)- and poly(phosphoester)-coated nanocarriers publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2015.330 – volume: 10 start-page: 7108 year: 2018 ident: 10.1016/j.addr.2022.114356_b0660 article-title: Disease-related metabolites affect protein-nanoparticle interactions publication-title: Nanoscale doi: 10.1039/C7NR09502C – volume: 13 start-page: 1603847 year: 2017 ident: 10.1016/j.addr.2022.114356_b0930 article-title: The impact of protein corona formation on the macrophage cellular uptake and biodistribution of spherical nucleic acids publication-title: Small doi: 10.1002/smll.201603847 – volume: 12 start-page: 387 issue: 4 year: 2017 ident: 10.1016/j.addr.2022.114356_b0900 article-title: Complement proteins bind to nanoparticle protein corona and undergo dynamic exchange in vivo publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2016.269 – volume: 15 start-page: 5019 issue: 11 year: 2018 ident: 10.1016/j.addr.2022.114356_b1140 article-title: Effects of protein corona on active and passive targeting of cyclic RGD peptide-functionalized PEGylation nanoparticles publication-title: Mol. Pharm. doi: 10.1021/acs.molpharmaceut.8b00612 – volume: 32 start-page: 2106353 issue: 2 year: 2022 ident: 10.1016/j.addr.2022.114356_b0455 article-title: Modulating protein corona and materials–cell interactions with temperature-responsive materials publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202106353 – volume: 104 start-page: 2050 year: 2007 ident: 10.1016/j.addr.2022.114356_b0035 article-title: Understanding the nanoparticle–protein corona using methods to quantify exchange rates and affinities of proteins for nanoparticles publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.0608582104 – volume: 6 start-page: 827 issue: 6 year: 2016 ident: 10.1016/j.addr.2022.114356_b0565 article-title: Preliminary protein corona formation stabilizes gold nanoparticles and improves deposition efficiency publication-title: Appl. Nanosci. doi: 10.1007/s13204-015-0501-z – volume: 24 start-page: 1409 year: 2003 ident: 10.1016/j.addr.2022.114356_b0940 article-title: Competitive adsorption of serum proteins at microparticles affects phagocytosis by dendritic cells publication-title: Biomaterials doi: 10.1016/S0142-9612(02)00525-2 – volume: 14 start-page: 14779 year: 2020 ident: 10.1016/j.addr.2022.114356_b0890 article-title: Interrogation of folic acid-functionalized nanomedicines: The regulatory roles of plasma proteins reexamined publication-title: ACS Nano doi: 10.1021/acsnano.0c02821 – volume: 17 start-page: 126 year: 2001 ident: 10.1016/j.addr.2022.114356_b0135 article-title: Expression and purification of functional human α-1-antitrypsin from cultured plant cells publication-title: Biotechnol. Progr. doi: 10.1021/bp0001516 – volume: 148 start-page: 146 year: 2019 ident: 10.1016/j.addr.2022.114356_b0805 article-title: Nanoformulation properties, characterization, and behavior in complex biological matrices: Challenges and opportunities for brain-targeted drug delivery applications and enhanced translational potential publication-title: Adv. Drug Del. Rev. doi: 10.1016/j.addr.2019.02.008 – volume: 11 start-page: 1030 issue: 4 year: 2021 ident: 10.1016/j.addr.2022.114356_b0330 article-title: Impact of particle size and pH on protein corona formation of solid lipid nanoparticles: a proof-of-concept study publication-title: Acta Pharma. Sin. B doi: 10.1016/j.apsb.2020.10.023 – volume: 251 start-page: 4398 issue: 14 year: 1976 ident: 10.1016/j.addr.2022.114356_b0505 article-title: The carbamate reaction of glycylglycine, plasma, and tissue extracts evaluated by a pH stopped flow apparatus publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(17)33310-0 – volume: 37 start-page: 161 year: 1985 ident: 10.1016/j.addr.2022.114356_b0105 article-title: Serum albumin publication-title: Adv. Protein Chem. doi: 10.1016/S0065-3233(08)60065-0 – volume: 505 start-page: 1165 year: 2017 ident: 10.1016/j.addr.2022.114356_b0285 article-title: Hemoglobin bioconjugates with surface-protected gold nanoparticles in aqueous media: The stability depends on solution pH and protein properties publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2017.07.011 – volume: 304 start-page: 102 year: 2019 ident: 10.1016/j.addr.2022.114356_b0335 article-title: Characterizing the protein corona of sub-10 nm nanoparticles publication-title: J. Controlled Release doi: 10.1016/j.jconrel.2019.04.023 – volume: 39 start-page: 1620 issue: 6 year: 2011 ident: 10.1016/j.addr.2022.114356_b0540 article-title: High fluid shear stress and spatial shear stress gradients affect endothelial proliferation, Survival, and Alignment publication-title: Ann. Biomed. Eng. doi: 10.1007/s10439-011-0267-8 – volume: 2006 issue: 327 year: 2006 ident: 10.1016/j.addr.2022.114356_b0760 article-title: Detecting Cryptic Epitopes Created by Nanoparticles publication-title: Sci. STKE doi: 10.1126/stke.3272006pe14 – volume: 11 start-page: 4535 year: 2020 ident: 10.1016/j.addr.2022.114356_b0695 article-title: Mapping and identification of soft corona proteins at nanoparticles and their impact on cellular association publication-title: Nat. Commun. doi: 10.1038/s41467-020-18237-7 – volume: 307 start-page: 93 issue: 1 year: 2006 ident: 10.1016/j.addr.2022.114356_b0920 article-title: Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles publication-title: Int. J. Pharm. doi: 10.1016/j.ijpharm.2005.10.010 – volume: 11 start-page: 23259 issue: 48 year: 2019 ident: 10.1016/j.addr.2022.114356_b0360 article-title: Surface roughness influences the protein corona formation of glycosylated nanoparticles and alter their cellular uptake publication-title: Nanoscale doi: 10.1039/C9NR06835J – volume: 108 start-page: 16968 year: 2011 ident: 10.1016/j.addr.2022.114356_b0985 article-title: Binding of blood proteins to carbon nanotubes reduces cytotoxicity publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.1105270108 – volume: 7 start-page: 6555 year: 2013 ident: 10.1016/j.addr.2022.114356_b0440 article-title: Temperature: The “ignored” factor at the nanobio interface publication-title: ACS Nano doi: 10.1021/nn305337c – volume: 40 start-page: 603 issue: 5 year: 1969 ident: 10.1016/j.addr.2022.114356_b0535 article-title: Measurement of instantaneous blood flow velocity and pressure in conscious man with a catheter-tip velocity probe publication-title: Circulation doi: 10.1161/01.CIR.40.5.603 – ident: 10.1016/j.addr.2022.114356_b0180 doi: 10.1201/9781351070898-2 – volume: 132 start-page: 23876 year: 2020 ident: 10.1016/j.addr.2022.114356_b0260 article-title: Quantitative protein corona composition and dynamics on carbon nanotubes in biological environments publication-title: Angew. Chem. doi: 10.1002/ange.202008175 – volume: 12 start-page: 3137 year: 2017 ident: 10.1016/j.addr.2022.114356_b0740 article-title: Protein corona: A new approach for nanomedicine design publication-title: Int J Nanomedicine doi: 10.2147/IJN.S129300 – volume: 13 start-page: 862 year: 2018 ident: 10.1016/j.addr.2022.114356_b1085 article-title: Pre-adsorption of antibodies enables targeting of nanocarriers despite a biomolecular corona publication-title: Nat. Nanotechnol. doi: 10.1038/s41565-018-0171-6 – volume: 15 start-page: 5783 year: 2020 ident: 10.1016/j.addr.2022.114356_b0095 article-title: Protein–nanoparticle interaction: Corona formation and conformational changes in proteins on nanoparticles publication-title: Int. J. Nanomed. doi: 10.2147/IJN.S254808 – volume: 161 start-page: 1552 year: 2020 ident: 10.1016/j.addr.2022.114356_b0165 article-title: Antithrombin III-mediated blood coagulation inhibitory activity of chitosan sulfate derivatized with different functional groups publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2020.08.069 – volume: 9 start-page: 1 year: 2019 ident: 10.1016/j.addr.2022.114356_b0155 article-title: Molecular form and concentration of serum α2-macroglobulin in diabetes publication-title: Sci. Rep. doi: 10.1038/s41598-019-49144-7 – volume: 7 start-page: 13958 issue: 33 year: 2015 ident: 10.1016/j.addr.2022.114356_b0555 article-title: The biomolecular corona of nanoparticles in circulating biological media publication-title: Nanoscale doi: 10.1039/C5NR03701H – ident: 10.1016/j.addr.2022.114356_b0975 doi: 10.1038/s41598-020-71170-z – volume: 19 start-page: 4692 year: 2019 ident: 10.1016/j.addr.2022.114356_b0655 article-title: Precision nanomedicine development based on specific opsonization of human cancer patient-personalized protein coronas publication-title: Nano Lett. doi: 10.1021/acs.nanolett.9b01774 – volume: 6 start-page: 1900411 year: 2019 ident: 10.1016/j.addr.2022.114356_b0480 article-title: AFM study of pH-dependent adhesion of single protein to TiO2 surface publication-title: Adv. Mater. Interfaces doi: 10.1002/admi.201900411 – volume: 29 start-page: 3923 issue: 11 year: 2018 ident: 10.1016/j.addr.2022.114356_b0820 article-title: Protein corona formed from different blood plasma proteins affects the colloidal stability of nanoparticles differently publication-title: Bioconjugate Chem. doi: 10.1021/acs.bioconjchem.8b00743 – volume: 10 start-page: 472 issue: 5 year: 2015 ident: 10.1016/j.addr.2022.114356_b1135 article-title: Mapping protein binding sites on the biomolecular corona of nanoparticles publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2015.47 – volume: 9 start-page: 3169 issue: 3 year: 2015 ident: 10.1016/j.addr.2022.114356_b0810 article-title: Elasticity of nanoparticles influences their blood circulation, phagocytosis, endocytosis, and targeting publication-title: ACS Nano doi: 10.1021/acsnano.5b00147 – volume: 143 start-page: 3 year: 2019 ident: 10.1016/j.addr.2022.114356_b0020 article-title: Effect of physicochemical and surface properties on in vivo fate of drug nanocarriers publication-title: Adv. Drug Del. Rev. doi: 10.1016/j.addr.2019.01.002 – volume: 15 start-page: 015008 issue: 1 year: 2013 ident: 10.1016/j.addr.2022.114356_b0550 article-title: Fluid shear stress sensitizes cancer cells to receptor-mediated apoptosis via trimeric death receptors publication-title: New J. Phys. doi: 10.1088/1367-2630/15/1/015008 – volume: 33 start-page: 443 year: 2011 ident: 10.1016/j.addr.2022.114356_b0595 article-title: Effects of shear on proteins in solution publication-title: Biotechnol. Lett doi: 10.1007/s10529-010-0469-4 – volume: 31 start-page: 2100227 year: 2021 ident: 10.1016/j.addr.2022.114356_b0980 article-title: Multi-responsive biodegradable cationic nanogels for highly efficient treatment of tumors publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202100227 – volume: 9 start-page: 8142 issue: 8 year: 2015 ident: 10.1016/j.addr.2022.114356_b1115 article-title: In vivo biomolecule corona around blood-circulating, clinically used and antibody-targeted lipid bilayer nanoscale vesicles publication-title: ACS Nano doi: 10.1021/acsnano.5b03300 – volume: 15 start-page: 501 issue: 9 year: 2019 ident: 10.1016/j.addr.2022.114356_b0210 article-title: Apolipoprotein E and Alzheimer disease: Pathobiology and targeting strategies publication-title: Nat. Rev. Neurol. doi: 10.1038/s41582-019-0228-7 – volume: 11 start-page: 3262 year: 2017 ident: 10.1016/j.addr.2022.114356_b0685 article-title: Unveiling the in vivo protein corona of circulating leukocyte-like carriers publication-title: ACS Nano doi: 10.1021/acsnano.7b00376 – volume: 35 start-page: 3455 year: 2014 ident: 10.1016/j.addr.2022.114356_b0955 article-title: Blood protein coating of gold nanoparticles as potential tool for organ targeting publication-title: Biomaterials doi: 10.1016/j.biomaterials.2013.12.100 – volume: 319 start-page: 371 year: 2020 ident: 10.1016/j.addr.2022.114356_b1015 article-title: Natural IgM dominates in vivo performance of liposomes publication-title: J. Controlled Release doi: 10.1016/j.jconrel.2020.01.018 – volume: 92 start-page: 942 year: 2017 ident: 10.1016/j.addr.2022.114356_b0205 article-title: Circulating complement factor H–related proteins 1 and 5 correlate with disease activity in IgA nephropathy publication-title: Kidney Int. doi: 10.1016/j.kint.2017.03.043 – volume: 9 start-page: 2405 issue: 3 year: 2015 ident: 10.1016/j.addr.2022.114356_b1105 article-title: Corona-directed nucleic acid delivery into hepatic stellate cells for liver fibrosis therapy publication-title: ACS Nano doi: 10.1021/nn505166x – volume: 117 year: 2020 ident: 10.1016/j.addr.2022.114356_b0350 article-title: The influence of shape and charge on protein corona composition in common gold nanostructures publication-title: Mater. Sci. Eng.: C doi: 10.1016/j.msec.2020.111270 – volume: 10 start-page: 4421 issue: 4 year: 2016 ident: 10.1016/j.addr.2022.114356_b0780 article-title: Regulation of macrophage recognition through the interplay of nanoparticle surface functionality and protein corona publication-title: ACS Nano doi: 10.1021/acsnano.6b00053 – volume: 47 start-page: 2651 year: 2014 ident: 10.1016/j.addr.2022.114356_b0735 article-title: Nanoparticle-cell interactions: Molecular structure of the protein corona and cellular outcomes publication-title: Acc. Chem. Res. doi: 10.1021/ar500190q – volume: 22 start-page: 2348 year: 2003 ident: 10.1016/j.addr.2022.114356_b0225 article-title: Crystal structure of the CUB1-EGF-CUB2 region of mannose-binding protein associated serine protease-2 publication-title: EMBO J. doi: 10.1093/emboj/cdg236 – volume: 30 start-page: 1588 year: 2014 ident: 10.1016/j.addr.2022.114356_b0275 article-title: pH-dependent interaction and resultant structures of silica nanoparticles and lysozyme protein publication-title: Langmuir doi: 10.1021/la403896h – volume: 194 start-page: 654 year: 2022 ident: 10.1016/j.addr.2022.114356_b0510 article-title: The influence of pH and ionic strength on the interactions between human serum albumin and magnetic iron oxide nanoparticles publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2021.11.110 – volume: 20 start-page: 321 year: 2020 ident: 10.1016/j.addr.2022.114356_b0010 article-title: Enhancing cancer immunotherapy with nanomedicine publication-title: Nat. Rev. Immunol. doi: 10.1038/s41577-019-0269-6 – volume: 272 start-page: 31333 issue: 50 year: 1997 ident: 10.1016/j.addr.2022.114356_b0120 article-title: The effect of apolipoprotein A-II on the structure and function of apolipoprotein AI in a homogeneous reconstituted high density lipoprotein particle publication-title: J. Biol. Chem. doi: 10.1074/jbc.272.50.31333 – volume: 8 start-page: 46 issue: 1-2 year: 2015 ident: 10.1016/j.addr.2022.114356_b0545 article-title: Capillary blood flow imaging within human finger cuticle using optical microangiography publication-title: J. Biophotonics doi: 10.1002/jbio.201300154 – volume: 5 start-page: 471 issue: 5 year: 2000 ident: 10.1016/j.addr.2022.114356_b0430 article-title: Fever and the heat shock response: Distinct, partially overlapping processes publication-title: Cell Stress Chaperones doi: 10.1379/1466-1268(2000)005<0471:FATHSR>2.0.CO;2 – volume: 21 start-page: 2002 year: 2022 ident: 10.1016/j.addr.2022.114356_b0580 article-title: Formation and biological effects of protein corona for food-related nanoparticles publication-title: Compr. Rev. Food Sci. Food Saf. doi: 10.1111/1541-4337.12838 – volume: 1 start-page: 102 issue: 1 year: 2014 ident: 10.1016/j.addr.2022.114356_b0785 article-title: Protein coronas suppress the hemolytic activity of hydrophilic and hydrophobic nanoparticles publication-title: Materials Horizons doi: 10.1039/C3MH00075C – volume: 57 start-page: 5548 issue: 19 year: 2018 ident: 10.1016/j.addr.2022.114356_b0800 article-title: Hydrophilicity regulates the stealth properties of polyphosphoester-coated nanocarriers publication-title: Angew. Chem. Int. Ed. Engl. doi: 10.1002/anie.201800272 – volume: 25 start-page: 7 year: 2018 ident: 10.1016/j.addr.2022.114356_b0770 article-title: Effect of surface charge and hydrophobicity on phospholipid-nanoparticle corona formation: A molecular dynamics simulation study, Colloid Interface publication-title: Sci. Commun. – volume: 20 start-page: 137 year: 2019 ident: 10.1016/j.addr.2022.114356_b0160 article-title: Influence of body mass index and prealbumin levels on lung function in patients with spinal muscular atrophy: A pilot study publication-title: J. Clin. Neuromuscul. Dis. doi: 10.1097/CND.0000000000000225 – volume: 14 start-page: 1801219 year: 2018 ident: 10.1016/j.addr.2022.114356_b0990 article-title: Protein corona mediated uptake and cytotoxicity of silver nanoparticles in mouse embryonic fibroblast publication-title: Small doi: 10.1002/smll.201801219 – volume: 5 start-page: 7503 issue: 9 year: 2011 ident: 10.1016/j.addr.2022.114356_b0755 article-title: The evolution of the protein corona around nanoparticles: A test study publication-title: ACS Nano doi: 10.1021/nn202458g – volume: 49 start-page: 1200 issue: 6 year: 2016 ident: 10.1016/j.addr.2022.114356_b0465 article-title: Tuning the protein corona of hydrogel nanoparticles: the synthesis of abiotic protein and peptide affinity reagents publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.6b00125 – volume: 274 start-page: 120888 year: 2021 ident: 10.1016/j.addr.2022.114356_b0865 article-title: The protein corona hampers the transcytosis of transferrin-modified nanoparticles through blood–brain barrier and attenuates their targeting ability to brain tumor publication-title: Biomaterials doi: 10.1016/j.biomaterials.2021.120888 – volume: 370 start-page: 581 issue: 3 year: 2019 ident: 10.1016/j.addr.2022.114356_b1030 article-title: The interplay between blood proteins, complement, and macrophages on nanomedicine performance and responses publication-title: J. Pharmacol. Exp. Ther. doi: 10.1124/jpet.119.258012 – ident: 10.1016/j.addr.2022.114356_b0170 doi: 10.1007/978-3-662-48986-4_3386 – volume: 119 start-page: 25482 year: 2015 ident: 10.1016/j.addr.2022.114356_b0280 article-title: Protein identity and environmental parameters determine the final physicochemical properties of protein-coated metal nanoparticles publication-title: The Journal of Physical Chemistry C doi: 10.1021/acs.jpcc.5b06266 – volume: 29 start-page: 6485 year: 2013 ident: 10.1016/j.addr.2022.114356_b0670 article-title: Time evolution of nanoparticle–protein corona in human plasma: Relevance for targeted drug delivery publication-title: Langmuir doi: 10.1021/la401192x – volume: 21 start-page: 1219 issue: 4 year: 2020 ident: 10.1016/j.addr.2022.114356_b0240 article-title: Multifaceted physiological roles of adiponectin in inflammation and diseases publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms21041219 – volume: 11 start-page: 18198 year: 2021 ident: 10.1016/j.addr.2022.114356_b0450 article-title: Probing protein dissociation from gold nanoparticles and the influence of temperature from the protein corona formation mechanism publication-title: RSC Advances doi: 10.1039/D1RA02116H – volume: 7 start-page: 914 issue: 4 year: 2007 ident: 10.1016/j.addr.2022.114356_b0365 article-title: Systematic investigation of the thermodynamics of HSA adsorption to N-iso-propylacrylamide/N-tert-butylacrylamide copolymer nanoparticles. Effects of particle size and hydrophobicity publication-title: Nano Lett. doi: 10.1021/nl062743+ – volume: 9 start-page: 530 year: 2021 ident: 10.1016/j.addr.2022.114356_b0410 article-title: Non-immunotherapy application of LNP-mRNA: Maximizing efficacy and safety publication-title: Biomedicines doi: 10.3390/biomedicines9050530 – volume: 5 start-page: 378 issue: 3 year: 2017 ident: 10.1016/j.addr.2022.114356_b1150 article-title: Personalized protein corona on nanoparticles and its clinical implications publication-title: Biomater. Sci. doi: 10.1039/C6BM00921B – volume: 93 start-page: 8084 year: 2021 ident: 10.1016/j.addr.2022.114356_b0625 article-title: High-fidelity and simultaneous sensing of endogenous mutant and wild p53 proteins for precise cancer diagnosis and drug screening publication-title: Anal. Chem. doi: 10.1021/acs.analchem.1c01540 – volume: 7 start-page: 779 issue: 12 year: 2012 ident: 10.1016/j.addr.2022.114356_b0910 article-title: Biomolecular coronas provide the biological identity of nanosized materials publication-title: Nature Nanotech doi: 10.1038/nnano.2012.207 – volume: 9 start-page: 4548 year: 2018 ident: 10.1016/j.addr.2022.114356_b0870 article-title: Cloaking nanoparticles with protein corona shield for targeted drug delivery publication-title: Nat. Commun. doi: 10.1038/s41467-018-06979-4 – volume: 175 start-page: 1 year: 2021 ident: 10.1016/j.addr.2022.114356_b0270 article-title: Biological effects of formation of protein corona onto nanoparticles publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2021.01.152 – volume: 4 start-page: 349 issue: 4 year: 2012 ident: 10.1016/j.addr.2022.114356_b0245 article-title: The multiple facets of dermcidin in cell survival and host defense publication-title: J. Innate Immun. doi: 10.1159/000336844 – volume: 64 start-page: 34 year: 2016 ident: 10.1016/j.addr.2022.114356_b0575 article-title: Modification of the protein corona–nanoparticle complex by physiological factors publication-title: Mater. Sci. Eng.: C doi: 10.1016/j.msec.2016.03.059 – volume: 105 start-page: 305 year: 2005 ident: 10.1016/j.addr.2022.114356_b1055 article-title: Accelerated blood clearance of PEGylated liposomes following preceding liposome injection: Effects of lipid dose and PEG surface-density and chain length of the first-dose liposomes publication-title: J. Controlled Release doi: 10.1016/j.jconrel.2005.04.003 – volume: 113 start-page: 539 year: 2020 ident: 10.1016/j.addr.2022.114356_b0195 article-title: Plasminogen improves lung lesions and hypoxemia in patients with COVID-19 publication-title: QJM: Int. J. Med. doi: 10.1093/qjmed/hcaa121 – volume: 22 start-page: 2641 issue: 6 year: 2021 ident: 10.1016/j.addr.2022.114356_b0460 article-title: Abiotic stimuli-responsive protein affinity reagent for IgG publication-title: Biomacromolecules doi: 10.1021/acs.biomac.1c00335 – volume: 21 start-page: 297 year: 2002 ident: 10.1016/j.addr.2022.114356_b0145 article-title: Hemopexin: Structure, function, and regulation publication-title: DNA Cell Biol. doi: 10.1089/104454902753759717 – volume: 118 start-page: 303 year: 2019 ident: 10.1016/j.addr.2022.114356_b0815 article-title: Role of protein corona in the biological effect of nanomaterials: Investigating methods, TrAC publication-title: Trends Anal. Chem. doi: 10.1016/j.trac.2019.05.039 – volume: 151 start-page: 27 year: 2018 ident: 10.1016/j.addr.2022.114356_b0630 article-title: Exosomes in lung cancer diagnosis and treatment. From the translating research into future clinical practice publication-title: Biochimie doi: 10.1016/j.biochi.2018.05.014 – volume: 554 start-page: 362 year: 2019 ident: 10.1016/j.addr.2022.114356_b0490 article-title: pH-dependent adsorption of α-amino acids, lysine, glutamic acid, serine and glycine, on TiO2 nanoparticle surfaces publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2019.06.086 – volume: 166 start-page: 79 year: 2018 ident: 10.1016/j.addr.2022.114356_b0610 article-title: Influence of dynamic flow conditions on adsorbed plasma protein corona and surface-induced thrombus generation on antifouling brushes publication-title: Biomaterials doi: 10.1016/j.biomaterials.2018.03.009 – volume: 3 start-page: 40 issue: 1-2 year: 2008 ident: 10.1016/j.addr.2022.114356_b0090 article-title: Protein-nanoparticle interactions publication-title: Nano Today doi: 10.1016/S1748-0132(08)70014-8 – volume: 2016 start-page: 189 year: 1858 ident: 10.1016/j.addr.2022.114356_b0385 article-title: The protein corona of circulating PEGylated liposomes publication-title: Biochim. Biophys. Acta – volume: 111 year: 2020 ident: 10.1016/j.addr.2022.114356_b0340 article-title: Effects of gold nanoparticle morphologies on interactions with proteins publication-title: Mater. Sci. Eng.: C doi: 10.1016/j.msec.2020.110830 – volume: 112 start-page: 7779 year: 2015 ident: 10.1016/j.addr.2022.114356_b1050 article-title: Long-circulating siRNA nanoparticles for validating prohibitin1-targeted non-small cell lung cancer treatment publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1505629112 – volume: 105 start-page: 14265 year: 2008 ident: 10.1016/j.addr.2022.114356_b0300 article-title: Nanoparticle size and surface properties determine the protein corona with possible implications for biological impacts publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.0805135105 – volume: 11 start-page: 4357 year: 2016 ident: 10.1016/j.addr.2022.114356_b0995 article-title: Defect density in multiwalled carbon nanotubes influences ovalbumin adsorption and promotes macrophage activation and CD4(+) T-cell proliferation publication-title: Int. J. Nanomed. doi: 10.2147/IJN.S111029 – volume: 41 start-page: 853 issue: 6 year: 2000 ident: 10.1016/j.addr.2022.114356_b0115 article-title: Apolipoprotein AI: Structure–function relationships publication-title: J. Lipid Res. doi: 10.1016/S0022-2275(20)32028-9 – volume: 7 start-page: 5573 issue: 12 year: 2021 ident: 10.1016/j.addr.2022.114356_b0845 article-title: Correlating corona composition and cell uptake to identify proteins affecting nanoparticle entry into endothelial cells publication-title: ACS Biomater. Sci. Eng. doi: 10.1021/acsbiomaterials.1c00804 – ident: 10.1016/j.addr.2022.114356_b0130 – volume: 98 start-page: 2133 issue: 4 year: 2018 ident: 10.1016/j.addr.2022.114356_b0235 article-title: Mechanisms of insulin action and insulin resistance publication-title: Physiol. Rev. doi: 10.1152/physrev.00063.2017 – volume: 61 start-page: 428 issue: 6 year: 2009 ident: 10.1016/j.addr.2022.114356_b0705 article-title: Nanoparticle interaction with plasma proteins as it relates to particle biodistribution, biocompatibility and therapeutic efficacy publication-title: Adv Drug Deliv Rev doi: 10.1016/j.addr.2009.03.009 – volume: 177 year: 2021 ident: 10.1016/j.addr.2022.114356_b0355 article-title: Non-spherical micro- and nanoparticles for drug delivery: Progress over 15 years publication-title: Adv. Drug Del. Rev. doi: 10.1016/j.addr.2021.05.017 – volume: 6 start-page: 39 issue: 1 year: 2011 ident: 10.1016/j.addr.2022.114356_b1010 article-title: Nanoparticle-induced unfolding of fibrinogen promotes Mac-1 receptor activation and inflammation publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2010.250 – volume: 10 start-page: 9094 year: 2018 ident: 10.1016/j.addr.2022.114356_b0675 article-title: Ligand size and conformation affect the behavior of nanoparticles coated with in vitro and in vivo protein corona publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b16096 – volume: 10 start-page: 332 year: 2019 ident: 10.1016/j.addr.2022.114356_b0950 article-title: Antibody-dependent cellular phagocytosis in antiviral immune responses publication-title: Front. Immunol. doi: 10.3389/fimmu.2019.00332 – volume: 129 start-page: 57 year: 2021 ident: 10.1016/j.addr.2022.114356_b0100 article-title: The protein corona and its effects on nanoparticle-based drug delivery systems publication-title: Acta Biomater. doi: 10.1016/j.actbio.2021.05.019 – volume: 8 start-page: 6948 issue: 13 year: 2016 ident: 10.1016/j.addr.2022.114356_b0530 article-title: Time-evolution of in vivo protein corona onto blood-circulating PEGylated liposomal doxorubicin (DOXIL) nanoparticles publication-title: Nanoscale doi: 10.1039/C5NR09158F – volume: 13 start-page: 49 year: 2022 ident: 10.1016/j.addr.2022.114356_b0255 article-title: The need for improved methodology in protein corona analysis publication-title: Nat. Commun. doi: 10.1038/s41467-021-27643-4 – start-page: 1377 year: 2001 ident: 10.1016/j.addr.2022.114356_b0435 – volume: 8 start-page: 3107 issue: 4 year: 2014 ident: 10.1016/j.addr.2022.114356_b1035 article-title: Nanoparticles for imaging, sensing, and therapeutic intervention publication-title: ACS Nano doi: 10.1021/nn500962q – volume: 3 start-page: 2520 issue: 10 year: 2021 ident: 10.1016/j.addr.2022.114356_b0475 article-title: A water-soluble photothermal host–guest complex with pH-sensitive superlarge redshift absorption publication-title: CCS Chemistry doi: 10.31635/ccschem.020.202000505 – volume: 345 start-page: 325 issue: 2 year: 2010 ident: 10.1016/j.addr.2022.114356_b0470 article-title: Temperature-responsive polymer-brush constructed on a glass substrate by atom transfer radical polymerization publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2009.10.004 – volume: 75 start-page: 295 year: 2016 ident: 10.1016/j.addr.2022.114356_b1130 article-title: Impact of protein pre-coating on the protein corona composition and nanoparticle cellular uptake publication-title: Biomaterials doi: 10.1016/j.biomaterials.2015.10.019 – volume: 170 start-page: 353 year: 2021 ident: 10.1016/j.addr.2022.114356_b0200 article-title: Fibronectin in development and wound healing publication-title: Adv. Drug Del. Rev. doi: 10.1016/j.addr.2020.09.005 – volume: 8 start-page: 772 issue: 10 year: 2013 ident: 10.1016/j.addr.2022.114356_b1100 article-title: Rapid formation of plasma protein corona critically affects nanoparticle pathophysiology publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2013.181 – volume: 12 start-page: 677 issue: 6 year: 2001 ident: 10.1016/j.addr.2022.114356_b0150 article-title: Fibrinogen: Structure, function, and surface interactions publication-title: J. Vasc. Interv. Radiol. doi: 10.1016/S1051-0443(07)61437-7 – volume: 153 start-page: 263 year: 2017 ident: 10.1016/j.addr.2022.114356_b0560 article-title: Influence of dynamic flow environment on nanoparticle-protein corona: From protein patterns to uptake in cancer cells publication-title: Colloids Surf. B. Biointerfaces doi: 10.1016/j.colsurfb.2017.02.037 – volume: 30 start-page: 1923 issue: 7 year: 2019 ident: 10.1016/j.addr.2022.114356_b0750 article-title: Understanding the chemical nature of nanoparticle-protein interactions publication-title: Bioconjug. Chem. doi: 10.1021/acs.bioconjchem.9b00348 – volume: 1163 start-page: 122504 year: 2021 ident: 10.1016/j.addr.2022.114356_b0085 article-title: Proteomic fingerprinting of protein corona formed on PEGylated multi-walled carbon nanotubes publication-title: J. Chromatogr. B doi: 10.1016/j.jchromb.2020.122504 – volume: 49 start-page: 6288 issue: 36 year: 2010 ident: 10.1016/j.addr.2022.114356_b1040 article-title: Poly(ethylene glycol) in drug delivery: Pros and cons as well as potential alternatives publication-title: Angewandte Chemie-International Edition doi: 10.1002/anie.200902672 – volume: 39 start-page: 881 year: 2015 ident: 10.1016/j.addr.2022.114356_b0665 article-title: Effect of the surface modification, size, and shape on cellular uptake of nanoparticles publication-title: Cell Biol. Int. doi: 10.1002/cbin.10459 – volume: 22 start-page: 1695 year: 2021 ident: 10.1016/j.addr.2022.114356_b0495 article-title: Metal-free polymer-based affinity medium for selective purification of his6-tagged proteins publication-title: Biomacromolecules doi: 10.1021/acs.biomac.1c00119 – volume: 31 start-page: 1575 issue: 5 year: 2020 ident: 10.1016/j.addr.2022.114356_b0895 article-title: The protein corona does not influence receptor-mediated targeting of virus-like particles publication-title: Bioconjugate Chem. doi: 10.1021/acs.bioconjchem.0c00240 – volume: 139 start-page: 3978 year: 2017 ident: 10.1016/j.addr.2022.114356_b0420 article-title: Spatial mapping of protein adsorption on mesoporous silica nanoparticles by stochastic optical reconstruction microscopy publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b01118 – volume: 31 start-page: 9511 year: 2010 ident: 10.1016/j.addr.2022.114356_b0445 article-title: Serum heat inactivation affects protein corona composition and nanoparticle uptake publication-title: Biomaterials doi: 10.1016/j.biomaterials.2010.09.049 – volume: 8 start-page: 777 year: 2017 ident: 10.1016/j.addr.2022.114356_b0390 article-title: Mechanistic understanding of in vivo protein corona formation on polymeric nanoparticles and impact on pharmacokinetics publication-title: Nat. Commun. doi: 10.1038/s41467-017-00600-w – volume: 31 year: 2019 ident: 10.1016/j.addr.2022.114356_b0380 article-title: The human in vivo biomolecule corona onto pegylated liposomes: A proof-of-concept clinical study publication-title: Adv. Mater. – volume: 115 start-page: 209 issue: 2 year: 2018 ident: 10.1016/j.addr.2022.114356_b0570 article-title: Protein corona in response to flow: Effect on protein concentration and structure publication-title: Biophys. J. doi: 10.1016/j.bpj.2018.02.036 – volume: 15 start-page: 5783 year: 2020 ident: 10.1016/j.addr.2022.114356_b0745 article-title: Protein-nanoparticle interaction: Corona formation and conformational changes in proteins on nanoparticles publication-title: Int. J. Nanomed. doi: 10.2147/IJN.S254808 – volume: 18 start-page: 4341 year: 2021 ident: 10.1016/j.addr.2022.114356_b0885 article-title: Unraveling the effect of breast cancer patients’ plasma on the targeting ability of folic acid-modified chitosan nanoparticles publication-title: Mol. Pharm. doi: 10.1021/acs.molpharmaceut.1c00525 – volume: 12 start-page: 73 year: 2022 ident: 10.1016/j.addr.2022.114356_b0605 article-title: Endogenous nitric oxide-releasing microgel coating prevents clot formation on oxygenator fibers exposed to in vitro blood flow publication-title: Membranes doi: 10.3390/membranes12010073 – volume: 294 start-page: 7269 issue: 18 year: 2019 ident: 10.1016/j.addr.2022.114356_b0230 article-title: Myoglobin induces mitochondrial fusion, thereby inhibiting breast cancer cell proliferation publication-title: J. Biol. Chem. doi: 10.1074/jbc.RA118.006673 – volume: 46 start-page: 547 year: 2000 ident: 10.1016/j.addr.2022.114356_b0140 article-title: Haptoglobin: Function and polymorphism publication-title: Clin. Lab. – volume: 163 start-page: 212 year: 2021 ident: 10.1016/j.addr.2022.114356_b0370 article-title: Identification of main influencing factors on the protein corona composition of PLGA and PLA nanoparticles publication-title: Eur. J. Pharm. Biopharm. doi: 10.1016/j.ejpb.2021.04.006 – volume: 18 start-page: 1357 issue: 7 year: 2010 ident: 10.1016/j.addr.2022.114356_b1125 article-title: Targeted delivery of RNAi therapeutics with endogenous and exogenous ligand-based mechanisms publication-title: Mol. Ther. doi: 10.1038/mt.2010.85 – volume: 95 start-page: 733 year: 2011 ident: 10.1016/j.addr.2022.114356_b0600 article-title: The effects of shear flow on protein structure and function publication-title: Biopolymers doi: 10.1002/bip.21646 – volume: 61 start-page: 428 year: 2009 ident: 10.1016/j.addr.2022.114356_b0925 article-title: Nanoparticle interaction with plasma proteins as it relates to particle biodistribution, biocompatibility and therapeutic efficacy publication-title: Adv. Drug Del. Rev. doi: 10.1016/j.addr.2009.03.009 – volume: 154-155 start-page: 151 year: 2020 ident: 10.1016/j.addr.2022.114356_b0400 article-title: When liposomes met antibodies: Drug delivery and beyond publication-title: Adv. Drug Del. Rev. doi: 10.1016/j.addr.2020.09.003 – volume: 7 start-page: 20568 issue: 37 year: 2015 ident: 10.1016/j.addr.2022.114356_b0840 article-title: Protein corona influences cellular uptake of gold nanoparticles by phagocytic and nonphagocytic cells in a size-dependent manner publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.5b04290 – volume: 10 start-page: 9664 year: 2020 ident: 10.1016/j.addr.2022.114356_b0935 article-title: Controlling evolution of protein corona: A prosperous approach to improve chitosan-based nanoparticle biodistribution and half-life publication-title: Sci. Rep. doi: 10.1038/s41598-020-66572-y – volume: 18 start-page: 699 year: 2021 ident: 10.1016/j.addr.2022.114356_b0730 article-title: Diffusion and protein corona formation of lipid-based nanoparticles in the vitreous humor: Profiling and pharmacokinetic considerations publication-title: Mol. Pharm. doi: 10.1021/acs.molpharmaceut.0c00411 – volume: 67 start-page: 101 issue: 1 year: 2015 ident: 10.1016/j.addr.2022.114356_b0125 article-title: The role of complement factor C3 in lipid metabolism publication-title: Mol. Immunol. doi: 10.1016/j.molimm.2015.02.027 – volume: 99 start-page: 28 year: 2016 ident: 10.1016/j.addr.2022.114356_b0395 article-title: PEGylation as a strategy for improving nanoparticle-based drug and gene delivery publication-title: Adv. Drug Del. Rev. doi: 10.1016/j.addr.2015.09.012 – volume: 6 start-page: 5845 issue: 7 year: 2012 ident: 10.1016/j.addr.2022.114356_b0915 article-title: Effects of the presence or absence of a protein corona on silica nanoparticle uptake and impact on cells publication-title: ACS Nano doi: 10.1021/nn300223w – volume: 286 start-page: 938 year: 2017 ident: 10.1016/j.addr.2022.114356_b0680 article-title: The protein corona around nanoparticles facilitates stem cell labeling for clinical MR imaging publication-title: Radiology doi: 10.1148/radiol.2017170130 – volume: 4 start-page: 8852 year: 2019 ident: 10.1016/j.addr.2022.114356_b0425 article-title: Protein corona over mesoporous silica nanoparticles: Influence of the pore diameter on competitive adsorption and application to prostate cancer diagnostics publication-title: ACS Omega doi: 10.1021/acsomega.9b00460 – volume: 20 start-page: 4133 issue: 18 year: 2018 ident: 10.1016/j.addr.2022.114356_b0080 article-title: Changing environments and biomolecule coronas: Consequences and challenges for the design of environmentally acceptable engineered nanoparticles publication-title: Green Chem. doi: 10.1039/C8GC01171K – volume: 606 start-page: 1737 year: 2022 ident: 10.1016/j.addr.2022.114356_b0290 article-title: Zhao, Influence of nanoparticle mechanical property on protein corona formation publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2021.08.148 – volume: 10 start-page: 1256 issue: 3 year: 2018 ident: 10.1016/j.addr.2022.114356_b0710 article-title: In vivo formation of protein corona on gold nanoparticles. The effect of their size and shape publication-title: Nanoscale doi: 10.1039/C7NR08322J – volume: 8 start-page: 166 year: 2020 ident: 10.1016/j.addr.2022.114356_b0055 article-title: Recent advances in understanding the protein corona of nanoparticles and in the formulation of “Stealthy” nanomaterials publication-title: Front. Bioeng. Biotechnol. doi: 10.3389/fbioe.2020.00166 – volume: 9 start-page: 2982 year: 2018 ident: 10.1016/j.addr.2022.114356_b1020 article-title: Enhanced immunocompatibility of ligand-targeted liposomes by attenuating natural IgM absorption publication-title: Nat. Commun. doi: 10.1038/s41467-018-05384-1 – volume: 16 start-page: 2000285 year: 2020 ident: 10.1016/j.addr.2022.114356_b0345 article-title: The influence of nanoparticle shape on protein corona formation publication-title: Small doi: 10.1002/smll.202000285 – volume: 69 start-page: 12 year: 1958 ident: 10.1016/j.addr.2022.114356_b0030 article-title: The charged groups at the interface of some blood cells publication-title: Biochem. J doi: 10.1042/bj0690012 – ident: 10.1016/j.addr.2022.114356_b0405 doi: 10.1016/B978-0-08-101750-0.00003-9 – volume: 7 start-page: 10960 issue: 12 year: 2013 ident: 10.1016/j.addr.2022.114356_b1005 article-title: Differential roles of the protein corona in the cellular uptake of nanoporous polymer particles by monocyte and macrophage cell lines publication-title: ACS Nano doi: 10.1021/nn404481f – volume: 7 start-page: 6819 issue: 12 year: 2015 ident: 10.1016/j.addr.2022.114356_b0640 article-title: Gold nanoparticle-enabled blood test for early stage cancer detection and risk assessment publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.5b00371 – volume: 13 start-page: 12577 issue: 29 year: 2021 ident: 10.1016/j.addr.2022.114356_b0855 article-title: Stealthy nanoparticles protect endothelial barrier from leakiness by resisting the absorption of VE-cadherin publication-title: Nanoscale doi: 10.1039/D1NR03155D – volume: 5 start-page: 3693 issue: 5 year: 2011 ident: 10.1016/j.addr.2022.114356_b1145 article-title: Protein corona-mediated mitigation of cytotoxicity of graphene oxide publication-title: ACS Nano doi: 10.1021/nn200021j – volume: 10 start-page: 4520 year: 2019 ident: 10.1016/j.addr.2022.114356_b0305 article-title: Tailoring the component of protein corona via simple chemistry publication-title: Nat. Commun. doi: 10.1038/s41467-019-12470-5 – volume: 14 start-page: 9587 year: 2019 ident: 10.1016/j.addr.2022.114356_b1065 article-title: In vivo studies on pharmacokinetics, toxicity and immunogenicity of polyelectrolyte nanocapsules functionalized with two different polymers: Poly-L-glutamic acid or PEG publication-title: Int. J. Nanomed. doi: 10.2147/IJN.S230865 – volume: 14 start-page: 1084 issue: 12 year: 2019 ident: 10.1016/j.addr.2022.114356_b1120 article-title: The Onpattro story and the clinical translation of nanomedicines containing nucleic acid-based drugs publication-title: Nat. Nanotechnol. doi: 10.1038/s41565-019-0591-y – volume: 19 start-page: 2557 year: 2019 ident: 10.1016/j.addr.2022.114356_b0585 article-title: The biomolecular corona of gold nanoparticles in a controlled microfluidic environment publication-title: Lab on a Chip doi: 10.1039/C9LC00341J – volume: 49 start-page: 21 issue: suppl_1 year: 2002 ident: 10.1016/j.addr.2022.114356_b0650 article-title: Am Bisome: Liposomal formulation, structure, mechanism of action and pre-clinical experience publication-title: J. Antimicrob. Chemother. doi: 10.1093/jac/49.suppl_1.21 – volume: 494 start-page: 430 year: 2015 ident: 10.1016/j.addr.2022.114356_b0880 article-title: Protein corona hampers targeting potential of MUC1 aptamer functionalized SN-38 core-shell nanoparticles publication-title: Int. J. Pharm. doi: 10.1016/j.ijpharm.2015.08.060 – volume: 104 start-page: 2050 issue: 7 year: 2007 ident: 10.1016/j.addr.2022.114356_b0790 article-title: Understanding the nanoparticle-protein corona using methods to quantify exchange rates and affinities of proteins for nanoparticles publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0608582104 – volume: 11 start-page: 888 issue: 4 year: 2021 ident: 10.1016/j.addr.2022.114356_b0065 article-title: Hard and soft protein corona of nanomaterials: analysis and relevance publication-title: Nanomaterials doi: 10.3390/nano11040888 – volume: 16 start-page: 3021 year: 2021 ident: 10.1016/j.addr.2022.114356_b0825 article-title: Are smaller nanoparticles always better? Understanding the biological effect of size-dependent silver nanoparticle aggregation under biorelevant conditions publication-title: Int. J. Nanomed. doi: 10.2147/IJN.S304138 – volume: 319 start-page: 407 year: 2020 ident: 10.1016/j.addr.2022.114356_b1110 article-title: Transferrin-binding peptide functionalized polymersomes mediate targeted doxorubicin delivery to colorectal cancer in vivo publication-title: J. Control. Release doi: 10.1016/j.jconrel.2020.01.012 – volume: 14 start-page: 1159 year: 2008 ident: 10.1016/j.addr.2022.114356_b0220 article-title: Abnormalities of prothrombin: A review of the pathophysiology, diagnosis, and treatment publication-title: Haemophilia doi: 10.1111/j.1365-2516.2008.01832.x – volume: 599 start-page: 120407 year: 2021 ident: 10.1016/j.addr.2022.114356_b0375 article-title: Evaluation of polymer choice on immunogenicity of chitosan coated PLGA NPs with surface-adsorbed pneumococcal protein antigen PspA4Pro publication-title: Int. J. Pharm. doi: 10.1016/j.ijpharm.2021.120407 – volume: 176 start-page: 2808 year: 2019 ident: 10.1016/j.addr.2022.114356_b0190 article-title: Histidine-rich glycoprotein ameliorates endothelial barrier dysfunction through regulation of NF-κB and MAPK signal pathway publication-title: Br. J. Pharmacol. doi: 10.1111/bph.14711 – volume: 9 start-page: 6996 issue: 7 year: 2015 ident: 10.1016/j.addr.2022.114356_b0795 article-title: Surface functionalization of nanoparticles with polyethylene glycol: Effects on protein adsorption and cellular uptake publication-title: ACS Nano doi: 10.1021/acsnano.5b01326 – volume: 9 start-page: 2480 year: 2018 ident: 10.1016/j.addr.2022.114356_b1000 article-title: Revealing the immune perturbation of black phosphorus nanomaterials to macrophages by understanding the protein corona publication-title: Nat. Commun. doi: 10.1038/s41467-018-04873-7 – volume: 141 start-page: 70 year: 2019 ident: 10.1016/j.addr.2022.114356_b0320 article-title: Effect of nanoparticle size and PEGylation on the protein corona of PLGA nanoparticles publication-title: Eur. J. Pharm. Biopharm. doi: 10.1016/j.ejpb.2019.05.006 – volume: 5 start-page: 3531 issue: 13 year: 2005 ident: 10.1016/j.addr.2022.114356_b0070 article-title: Plasma proteome database as a resource for proteomics research publication-title: Proteomics doi: 10.1002/pmic.200401335 – volume: 50 start-page: 816 year: 2017 ident: 10.1016/j.addr.2022.114356_b0185 article-title: Complement factor C4 activation in patients with hereditary angioedema publication-title: Clin. Biochem. doi: 10.1016/j.clinbiochem.2017.04.007 – volume: 588 year: 2020 ident: 10.1016/j.addr.2022.114356_b0415 article-title: PEG shedding-rate-dependent blood clearance of PEGylated lipid nanoparticles in mice: Faster PEG shedding attenuates anti-PEG IgM production publication-title: Int. J. Pharm. doi: 10.1016/j.ijpharm.2020.119792 – volume: 6 start-page: 713 issue: 7 year: 2012 ident: 10.1016/j.addr.2022.114356_b0765 article-title: Size and surface charge significantly influence the toxicity of silica and dendritic nanoparticles publication-title: Nanotoxicology doi: 10.3109/17435390.2011.604442 – volume: 43 start-page: 1339 year: 2020 ident: 10.1016/j.addr.2022.114356_b0005 article-title: Selected nanotechnologies and nanostructures for drug delivery, nanomedicine and cure publication-title: Bioprocess Biosystems Eng. doi: 10.1007/s00449-020-02330-8 – volume: 12 start-page: 387 year: 2017 ident: 10.1016/j.addr.2022.114356_b0615 article-title: Complement proteins bind to nanoparticle protein corona and undergo dynamic exchange in vivo publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2016.269 – volume: 137 start-page: 52 year: 2016 ident: 10.1016/j.addr.2022.114356_b1075 article-title: An environmental route of exposure affects the formation of nanoparticle coronas in blood plasma publication-title: J. Proteomics doi: 10.1016/j.jprot.2015.10.028 – start-page: 112 year: 1995 ident: 10.1016/j.addr.2022.114356_b0520 – volume: 12 start-page: 48284 year: 2020 ident: 10.1016/j.addr.2022.114356_b0295 article-title: Protein nanoparticle charge and hydrophobicity govern protein corona and macrophage uptake publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.0c12341 – volume: 105 start-page: 14265 issue: 38 year: 2008 ident: 10.1016/j.addr.2022.114356_b1095 article-title: Nanoparticle size and surface properties determine the protein corona with possible implications for biological impacts publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0805135105 – volume: 6 start-page: 251 issue: 1 year: 1988 ident: 10.1016/j.addr.2022.114356_b0110 article-title: Structure and function of human and murine receptors for IgG publication-title: Annu. Rev. Immunol. doi: 10.1146/annurev.iy.06.040188.001343 – volume: 80 start-page: 773 issue: 6 year: 2014 ident: 10.1016/j.addr.2022.114356_b0250 article-title: Insulin-like growth factor-II: Its role in metabolic and endocrine disease publication-title: Clin. Endocrinol. (Oxf.) doi: 10.1111/cen.12446 – volume: 4 start-page: 3623 issue: 7 year: 2010 ident: 10.1016/j.addr.2022.114356_b0525 article-title: Time evolution of the nanoparticle protein corona publication-title: ACS Nano doi: 10.1021/nn901372t – volume: 10 start-page: 1129 year: 2020 ident: 10.1016/j.addr.2022.114356_b0315 article-title: Understanding the lipid and protein corona formation on different sized polymeric nanoparticles publication-title: Sci. Rep. doi: 10.1038/s41598-020-57943-6 – volume: 3 start-page: 1900124 year: 2019 ident: 10.1016/j.addr.2022.114356_b1070 article-title: Cancer-targeted nanomedicine: Overcoming the barrier of the protein corona publication-title: Adv. Ther. doi: 10.1002/adtp.201900124 – volume: 3 start-page: 1900124 issue: 1 year: 2020 ident: 10.1016/j.addr.2022.114356_b0060 article-title: Cancer-targeted nanomedicine: overcoming the barrier of the protein corona publication-title: Adv. Ther. doi: 10.1002/adtp.201900124 – volume: 16 start-page: 617 issue: 6 year: 2021 ident: 10.1016/j.addr.2022.114356_b0075 article-title: Environmental dimensions of the protein corona publication-title: Nat. Nanotechnol. doi: 10.1038/s41565-021-00924-1 – volume: 2 start-page: 1900 year: 2011 ident: 10.1016/j.addr.2022.114356_b1060 article-title: Overcoming the PEG-addiction: Well-defined alternatives to PEG, from structure-property relationships to better defined therapeutics publication-title: Polym. Chem. doi: 10.1039/c0py00406e – volume: 8 start-page: 503 issue: 1 year: 2014 ident: 10.1016/j.addr.2022.114356_b0905 article-title: Impact of protein modification on the protein corona on nanoparticles and nanoparticle–cell interactions publication-title: ACS Nano doi: 10.1021/nn405019v – volume: 17 start-page: 1210 issue: 11 year: 2020 ident: 10.1016/j.addr.2022.114356_b0175 article-title: Different domains of β2-glycoprotein I play a role in autoimmune pathogenesis publication-title: Cell. Mol. Immunol. doi: 10.1038/s41423-018-0060-9 – volume: 10 start-page: 317 year: 2002 ident: 10.1016/j.addr.2022.114356_b0960 article-title: Apolipoprotein-mediated transport of nanoparticle-bound drugs across the blood-brain barrier publication-title: J. Drug Targeting doi: 10.1080/10611860290031877 – volume: 8 start-page: 3474 issue: 13 year: 2018 ident: 10.1016/j.addr.2022.114356_b0715 article-title: Drug-delivering-drug platform-mediated potent protein therapeutics via a non-endo-lysosomal route publication-title: Theranostics doi: 10.7150/thno.23804 – volume: 7 start-page: 8978 issue: 19 year: 2015 ident: 10.1016/j.addr.2022.114356_b0645 article-title: Personalized disease-specific protein corona influences the therapeutic impact of graphene oxide publication-title: Nanoscale doi: 10.1039/C5NR00520E – volume: 111 start-page: 651 year: 2008 ident: 10.1016/j.addr.2022.114356_b0590 article-title: Platelet-VWF complexes are preferred substrates of ADAMTS13 under fluid shear stress, Blood, The Journal of the American Society of publication-title: Hematology – volume: 16 start-page: 1907574 year: 2020 ident: 10.1016/j.addr.2022.114356_b0045 article-title: Polymeric nanoparticles with neglectable protein corona publication-title: Small doi: 10.1002/smll.201907574 – volume: 2019 start-page: 5410657 year: 2019 ident: 10.1016/j.addr.2022.114356_b0215 article-title: Alpha-2-macroglobulin, a hypochlorite-regulated chaperone and immune system modulator publication-title: Oxid. Med. Cell. Longev. doi: 10.1155/2019/5410657 – volume: 9 start-page: 20 issue: 1 year: 2011 ident: 10.1016/j.addr.2022.114356_b0635 article-title: A facile nanoparticle immunoassay for cancer biomarker discovery publication-title: J. Nanobiotechnol. doi: 10.1186/1477-3155-9-20 – volume: 15 start-page: 1481 year: 2020 ident: 10.1016/j.addr.2022.114356_b0850 article-title: A protein corona adsorbed to a bacterial magnetosome affects its cellular uptake publication-title: Int. J. Nanomed. doi: 10.2147/IJN.S220082 – volume: 7 start-page: 11770 year: 2016 ident: 10.1016/j.addr.2022.114356_b0700 article-title: Dynamic protein coronas revealed as a modulator of silver nanoparticle sulphidation in vitro publication-title: Nat. Commun. doi: 10.1038/ncomms11770 – volume: 13 start-page: 163 year: 1996 ident: 10.1016/j.addr.2022.114356_b0500 article-title: Estimation of the increase in solubility of drugs as a function of bile salt concentration publication-title: Pharm. Res. doi: 10.1023/A:1016062224568 – volume: 27 start-page: 1070 year: 2014 ident: 10.1016/j.addr.2022.114356_b0970 article-title: Binding of human serum albumin to single-walled carbon nanotubes activated neutrophils to increase production of hypochlorous acid, the oxidant capable of degrading nanotubes publication-title: Chem. Res. Toxicol. doi: 10.1021/tx5001317 – volume: 41 start-page: 1835 year: 2021 ident: 10.1016/j.addr.2022.114356_b0325 article-title: Protein corona formed in the gastrointestinal tract and its impacts on oral delivery of nanoparticles publication-title: Med. Res. Rev. doi: 10.1002/med.21767 |
SSID | ssj0012760 |
Score | 2.6673005 |
SecondaryResourceType | review_article |
Snippet | The nanoparticles interact with the biomaterials in biological fluids, resulting in protein corona formation that may influence their properties and in vivo... With the emerging advances in utilizing nanocarriers for biomedical applications, a molecular-level understanding of the in vivo fate of nanocarriers is... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 114356 |
SubjectTerms | Drug delivery In vivo fate Nanoparticles Protein corona Protein-nanomaterial interaction |
Title | The effects of protein corona on in vivo fate of nanocarriers |
URI | https://dx.doi.org/10.1016/j.addr.2022.114356 https://www.ncbi.nlm.nih.gov/pubmed/35595022 https://www.proquest.com/docview/2667786711 |
Volume | 186 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5EEbyIb-uLFcSLjc1uHu0eiyhVQQQt9LZkX1CRpPQFvfjbnckmFUE9eEyYTZbZ3ZlvkplvCLkIVcQizVVgEp0EcQZ2MGOKBQCWOzrWPLOe7fMp7fXjh0EyWCE3dS0MplVWtt_b9NJaV3dalTZbo-Gw9YI8IhCdDDjmGcQpxu3IXgd7-vpjmebBeLusFEbhAKWrwhmf4wWHGzlBOUfK3AibWP_snH4Dn6UTutsimxV6pF0_wW2yYvMdsu77SS52yOWzJ6JeNOnrV13VpEkv6fMXRfVit2wuT6tUDlo4WrI1DHOqkc8go0VO4WI-nBfUARZFiTzLweuNsb_dZI_0725fb3pB1Ugh0DHn04DbTHQEQB3j2oq7NGobYUKjXMaYENZq4Tj2RoHQJjSdRDsRaadtap3AT5km2iereZHbQ0IjCDFYqGGGMYuV7ShlhI6TMOKKi9TYBmG1BqWuWMax2cW7rNPJ3iRqXaLWpdd6g1wtx4w8x8af0km9MPLbTpHgBP4cd16vooQjhP9FstwWs4kEjIIsem3GGuTAL-9yHgDHRAIPOfrnW4_JBl75BN8Tsjodz-wpwJipOiv36RlZ694_9p4-Aa1s77s |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swED9KythextZ9Zd2HBqMvq4kly070WMpKunahsBTyJqwvSBl2adJC_vveWXLKYOvDHm1LtjhJd7-z7n4H8DU3BS-sMJkrbZnJGvVgzQ3PECxPrLSi9pHtc1ZNL-WPRbnYgeM-F4bCKpPujzq909bpzihJc3S9XI5-EY8IeicLQXEGskK_fZfYqeQAdo9Oz6az7WGCGHfJwtQ-ow4pdyaGeeH-JlpQIYg1t6A61n-3T__Cn50dOnkBzxOAZEdxjC9hxzd78CSWlNzswcFF5KLeHLL5Q2rV6pAdsIsHlurNq66-PEvRHKwNrCNsWDbMEqVBzdqG4cXd8q5lAeEotWjqBg3fDZW4W72Gy5Pv8-NplmopZFYKsc6Er9VEIdpxYWxEqIqxUy53JtScK-W9VUFQeRT0bnI3KW1QhQ3WVz4o-pvpijcwaNrGvwNWoJfBc4sjlFwaPzHGKSvLvBBGqMr5IfBegtomonGqd_Fb9xFlV5qkrknqOkp9CN-2fa4jzcajrct-YvQfi0WjHXi035d-FjXuIjoaqRvf3q40whQi0htzPoS3cXq340BEpkp8yfv__OpneDqd_zzX56ezs314Rk9ivO8HGKxvbv1HRDVr8ymt2nvrovJs |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+effects+of+protein+corona+on+in+vivo+fate+of+nanocarriers&rft.jtitle=Advanced+drug+delivery+reviews&rft.au=Xiao%2C+Qingqing&rft.au=Zoulikha%2C+Makhloufi&rft.au=Qiu%2C+Min&rft.au=Teng%2C+Chao&rft.date=2022-07-01&rft.pub=Elsevier+B.V&rft.issn=0169-409X&rft.eissn=1872-8294&rft.volume=186&rft_id=info:doi/10.1016%2Fj.addr.2022.114356&rft.externalDocID=S0169409X22002460 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0169-409X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0169-409X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0169-409X&client=summon |