BCI Competition III: Dataset II- Ensemble of SVMs for BCI P300 Speller

Brain-computer interface P300 speller aims at helping patients unable to activate muscles to spell words by means of their brain signal activities. Associated to this BCI paradigm, there is the problem of classifying electroencephalogram signals related to responses to some visual stimuli. This pape...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on biomedical engineering Vol. 55; no. 3; pp. 1147 - 1154
Main Authors Rakotomamonjy, Alain, Guigue, Vincent
Format Journal Article
LanguageEnglish
Published United States IEEE 01.03.2008
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Institute of Electrical and Electronics Engineers
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Brain-computer interface P300 speller aims at helping patients unable to activate muscles to spell words by means of their brain signal activities. Associated to this BCI paradigm, there is the problem of classifying electroencephalogram signals related to responses to some visual stimuli. This paper addresses the problem of signal responses variability within a single subject in such brain-computer interface. We propose a method that copes with such variabilities through an ensemble of classifiers approach. Each classifier is composed of a linear support vector machine trained on a small part of the available data and for which a channel selection procedure has been performed. Performances of our algorithm have been evaluated on dataset II of the BCI Competition III and has yielded the best performance of the competition.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
ObjectType-Undefined-3
ISSN:0018-9294
1558-2531
DOI:10.1109/TBME.2008.915728