Synthesis and Magnetic Behavior of Nickel Zinc Ferrite Nanoparticles Coated Onto Carbon Microcoils

Magnetic nanoparticles consisted of nickel zinc ferrite (NZF) were chemically synthesized by co-precipitation and simultaneously coated onto carbon microcoils (CMC), and their structure and magnetic properties were investigated. The samples were prepared at various mass ratios of CMC : NZF ranging f...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on magnetics Vol. 49; no. 8; pp. 4824 - 4826
Main Authors Shima, Mutsuhiro, Oguri, Kazuo, Ohya, Yutaka, Gomi, Manabu, Ikuhara, Yumi H., Sasaki, Yusuke, Hishikawa, Yukio, Kawabe, Kenji
Format Journal Article
LanguageEnglish
Published New York, NY IEEE 01.08.2013
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Magnetic nanoparticles consisted of nickel zinc ferrite (NZF) were chemically synthesized by co-precipitation and simultaneously coated onto carbon microcoils (CMC), and their structure and magnetic properties were investigated. The samples were prepared at various mass ratios of CMC : NZF ranging from 1 : 5 to 5 : 1. According to X-ray diffraction (XRD) measurements, all the samples synthesized in this study exhibit peaks associated with the spinel ferrite structure of NZF nanoparticles along with a fairly broad peak due to the amorphous structure of CMC. The sample synthesized at CMC: NZF = 1 : 1 gives the highest crystallinity and the largest magnetization at 300 K for NZF according to XRD and magnetization measurement using a superconducting quantum interference device magnetometer. Microstructural analysis of the CMC-NZF assemblies using scanning electron microscopy shows that the use of oleic acid and oleylamine improves the coverage of NZF on CMC and that the assembly made at CMC: NZF = 2 : 1 yields the highest coverage of NZF nanoparticles onto the CMC surface.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0018-9464
1941-0069
DOI:10.1109/TMAG.2013.2243461