A Review of Perovskites Solar Cell Stability

In this review, the factors influencing the power conversion efficiency (PCE) of perovskite solar cells (PSCs) is emphasized. The PCE of PSCs has remarkably increased from 3.8% to 23.7%, but on the other hand, poor stability is one of the main facets that creates a huge barrier in the commercializat...

Full description

Saved in:
Bibliographic Details
Published inAdvanced functional materials Vol. 29; no. 47
Main Authors Wang, Rui, Mujahid, Muhammad, Duan, Yu, Wang, Zhao‐Kui, Xue, Jingjing, Yang, Yang
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc 01.11.2019
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In this review, the factors influencing the power conversion efficiency (PCE) of perovskite solar cells (PSCs) is emphasized. The PCE of PSCs has remarkably increased from 3.8% to 23.7%, but on the other hand, poor stability is one of the main facets that creates a huge barrier in the commercialization of PSCs. Herein, a concise overview of the current efforts to enhance the stability of PSCs is provided; moreover, the degradation causes and mechanisms are summarized. The strategies to improve device stability are portrayed in terms of structural effects, a photoactive layer, hole‐ and electron‐transporting layers, electrode materials, and device encapsulation. Last but not least, the economic feasibility of PSCs is also vividly discussed. In parallel with the tremendous progress in the efficiency of perovskite solar cells, research on the issue of instability has attracted enormous attention. In this review, the strategies to enhance the stability from the perspectives of the device structure, the photoactive layer, hole‐ and electron‐transporting layers, electrode materials, and device encapsulation are portrayed.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1616-301X
1616-3028
DOI:10.1002/adfm.201808843