Context-Guided SAR Ship Detection with Prototype-Based Model Pretraining and Check–Balance-Based Decision Fusion

To address the challenging problem of multi-scale inshore–offshore ship detection in synthetic aperture radar (SAR) remote sensing images, we propose a novel deep learning-based automatic ship detection method within the framework of compositional learning. The proposed method is supported by three...

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 25; no. 16; p. 4938
Main Authors Zhou, Haowen, Geng, Zhe, Sun, Minjie, Wu, Linyi, Yan, He
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 10.08.2025
MDPI
Subjects
Online AccessGet full text
ISSN1424-8220
1424-8220
DOI10.3390/s25164938

Cover

More Information
Summary:To address the challenging problem of multi-scale inshore–offshore ship detection in synthetic aperture radar (SAR) remote sensing images, we propose a novel deep learning-based automatic ship detection method within the framework of compositional learning. The proposed method is supported by three pillars: context-guided region proposal, prototype-based model-pretraining, and multi-model ensemble learning. To reduce the false alarms induced by the discrete ground clutters, the prior knowledge of the harbour’s layout is exploited to generate land masks for terrain delimitation. To prepare the model for the diverse ship targets of different sizes and orientations it might encounter in the test environment, a novel cross-dataset model pretraining strategy is devised, where the SAR images of several key ship target prototypes from the auxiliary dataset are used to support class-incremental learning. To combine the advantages of diverse model architectures, an adaptive decision-level fusion framework is proposed, which consists of three components: a dynamic confidence threshold assignment strategy based on the sizes of targets, a weighted fusion mechanism based on president-senate check–balance, and Soft-NMS-based Dense Group Target Bounding Box Fusion (Soft-NMS-DGT-BBF). The performance enhancement brought by contextual knowledge-aided terrain delimitation, cross-dataset prototype-based model pretraining and check–balance-based adaptive decision-level fusion are validated with a series of ingeniously devised experiments based on the FAIR-CSAR-Ship dataset.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1424-8220
1424-8220
DOI:10.3390/s25164938