Barrier Designs in Perovskite Solar Cells for Long‐Term Stability
Perovskite solar cells (PSCs) have attracted much attention in the past decade and their power conversion efficiency has been rapidly increasing to 25.2%, which is comparable with commercialized solar cells. Currently, the long‐term stability of PSCs remains as a major bottleneck impeding their futu...
Saved in:
Published in | Advanced energy materials Vol. 10; no. 35 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
01.09.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Perovskite solar cells (PSCs) have attracted much attention in the past decade and their power conversion efficiency has been rapidly increasing to 25.2%, which is comparable with commercialized solar cells. Currently, the long‐term stability of PSCs remains as a major bottleneck impeding their future commercial applications. Beyond strengthening the perovskite layer itself and developing robust external device encapsulation/packaging technology, integration of effective barriers into PSCs has been recognized to be of equal importance to improve the whole device’s long‐term stability. These barriers can not only shield the critical perovskite layer and other functional layers from external detrimental factors such as heat, light, and H2O/O2, but also prevent the undesired ion/molecular diffusion/volatilization from perovskite. In addition, some delicate barrier designs can simultaneously improve the efficiency and stability. In this review article, the research progress on barrier designs in PSCs for improving their long‐term stability is reviewed in terms of the barrier functions, locations in PSCs, and material characteristics. Regarding specific barriers, their preparation methods, chemical/photoelectronic/mechanical properties, and their role in device stability, are further discussed. On the basis of these accumulative efforts, predictions for the further development of effective barriers in PSCs are provided at the end of this review.
Barriers with compact morphology/structure and shielding capability can be designed/ integrated in perovskite solar cells to prevent issues like product volatilization, ion diffusion, electrode corrosion, and ingress of the harmful components brought about by the intrinsic interface failure or the attack of heat, sunlight, electric bias, and H2O/O2, leading to robust stability of the whole device. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 1614-6832 1614-6840 |
DOI: | 10.1002/aenm.202001610 |