Mechanistic studies of chemical looping desulfurization of Mn-based oxides using in situ X-ray absorption spectroscopy
•Mn sorbents remove H2S from hot syngas in chemical looping desulfurization process.•State of Mn followed by in situ X-ray absorption spectroscopy and mass spectrometry.•Two-step mechanism explains the formation of SO2 under reducing conditions. Cleaning of producer gas from biomass gasification is...
Saved in:
Published in | Applied energy Vol. 113; pp. 1895 - 1901 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.01.2014
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •Mn sorbents remove H2S from hot syngas in chemical looping desulfurization process.•State of Mn followed by in situ X-ray absorption spectroscopy and mass spectrometry.•Two-step mechanism explains the formation of SO2 under reducing conditions.
Cleaning of producer gas from biomass gasification is required for further processing, e.g. to avoid catalyst poisoning in subsequent conversion steps. High-temperature gas cleaning, of which sulfur removal is an important part, is a promising way to improve the overall efficiency of biomass conversion. In a high temperature “chemical looping desulfurization” process, a sorbent material, here manganese oxide, is cycled between producer gas from the gasifier to remove sulfur species, and an oxidizing atmosphere, in which the sulfur species are released as SO2. Alternatively, the use of such material as reactive bed material could be integrated into an allothermal dual fluidized bed gasifier. In a laboratory reactor, we subjected manganese-based materials to a periodically changing gas atmosphere, simulating a “chemical looping desulfurization” reactor. The “fuel reactor” gas contained H2, CO, CH4 and H2S, similar as in the producer gas, and the “oxidizing reactor” contained diluted O2. Mass spectrometry showed that most of the H2S is taken up by the sample in the “fuel reactor” part, while also some unwanted SO2 is generated in the “fuel reactor” part. Most of the sulfur is released in the oxidizing reactor. Simultaneous in situ X-ray absorption spectroscopy (XAS) of the Mn materials during different stages of the chemical looping desulfurization process showed that the initial Mn3O4 is transformed in the presence of H2S to MnS via a MnO intermediate in the fuel reactor. Oxygen from the reduction of Mn3O4 oxidizes some H2S to the undesired SO2 in the fuel reactor. Upon exposure to O2, MnS is again oxidized to Mn3O4 via MnO, releasing SO2. The presence of CO and/or CH4 in the fuel reactor has no effect on this mechanism. Measuring the structure–performance relationship of gas cleaning materials with in situ methods will enable knowledge-based materials development for improved performance. |
---|---|
AbstractList | •Mn sorbents remove H2S from hot syngas in chemical looping desulfurization process.•State of Mn followed by in situ X-ray absorption spectroscopy and mass spectrometry.•Two-step mechanism explains the formation of SO2 under reducing conditions.
Cleaning of producer gas from biomass gasification is required for further processing, e.g. to avoid catalyst poisoning in subsequent conversion steps. High-temperature gas cleaning, of which sulfur removal is an important part, is a promising way to improve the overall efficiency of biomass conversion. In a high temperature “chemical looping desulfurization” process, a sorbent material, here manganese oxide, is cycled between producer gas from the gasifier to remove sulfur species, and an oxidizing atmosphere, in which the sulfur species are released as SO2. Alternatively, the use of such material as reactive bed material could be integrated into an allothermal dual fluidized bed gasifier. In a laboratory reactor, we subjected manganese-based materials to a periodically changing gas atmosphere, simulating a “chemical looping desulfurization” reactor. The “fuel reactor” gas contained H2, CO, CH4 and H2S, similar as in the producer gas, and the “oxidizing reactor” contained diluted O2. Mass spectrometry showed that most of the H2S is taken up by the sample in the “fuel reactor” part, while also some unwanted SO2 is generated in the “fuel reactor” part. Most of the sulfur is released in the oxidizing reactor. Simultaneous in situ X-ray absorption spectroscopy (XAS) of the Mn materials during different stages of the chemical looping desulfurization process showed that the initial Mn3O4 is transformed in the presence of H2S to MnS via a MnO intermediate in the fuel reactor. Oxygen from the reduction of Mn3O4 oxidizes some H2S to the undesired SO2 in the fuel reactor. Upon exposure to O2, MnS is again oxidized to Mn3O4 via MnO, releasing SO2. The presence of CO and/or CH4 in the fuel reactor has no effect on this mechanism. Measuring the structure–performance relationship of gas cleaning materials with in situ methods will enable knowledge-based materials development for improved performance. Cleaning of producer gas from biomass gasification is required for further processing, e.g. to avoid catalyst poisoning in subsequent conversion steps. High-temperature gas cleaning, of which sulfur removal is an important part, is a promising way to improve the overall efficiency of biomass conversion. In a high temperature achemical looping desulfurizationa process, a sorbent material, here manganese oxide, is cycled between producer gas from the gasifier to remove sulfur species, and an oxidizing atmosphere, in which the sulfur species are released as SO2. Alternatively, the use of such material as reactive bed material could be integrated into an allothermal dual fluidized bed gasifier. In a laboratory reactor, we subjected manganese-based materials to a periodically changing gas atmosphere, simulating a achemical looping desulfurizationa reactor. The afuel reactora gas contained H2, CO, CH4 and H2S, similar as in the producer gas, and the aoxidizing reactora contained diluted O2. Mass spectrometry showed that most of the H2S is taken up by the sample in the afuel reactora part, while also some unwanted SO2 is generated in the afuel reactora part. Most of the sulfur is released in the oxidizing reactor. Simultaneous in situ X-ray absorption spectroscopy (XAS) of the Mn materials during different stages of the chemical looping desulfurization process showed that the initial Mn3O4 is transformed in the presence of H2S to MnS via a MnO intermediate in the fuel reactor. Oxygen from the reduction of Mn3O4 oxidizes some H2S to the undesired SO2 in the fuel reactor. Upon exposure to O2, MnS is again oxidized to Mn3O4 via MnO, releasing SO2. The presence of CO and/or CH4 in the fuel reactor has no effect on this mechanism. Measuring the structureaperformance relationship of gas cleaning materials with in situ methods will enable knowledge-based materials development for improved performance. Cleaning of producer gas from biomass gasification is required for further processing, e.g. to avoid catalyst poisoning in subsequent conversion steps. High-temperature gas cleaning, of which sulfur removal is an important part, is a promising way to improve the overall efficiency of biomass conversion. In a high temperature "chemical looping desulfurization" process, a sorbent material, here manganese oxide, is cycled between producer gas from the gasifier to remove sulfur species, and an oxidizing atmosphere, in which the sulfur species are released as SO2. Alternatively, the use of such material as reactive bed material could be integrated into an allothermal dual fluidized bed gasifier. In a laboratory reactor, we subjected manganese-based materials to a periodically changing gas atmosphere, simulating a "chemical looping desulfurization" reactor. The "fuel reactor" gas contained H2, CO, CH4 and H2S, similar as in the producer gas, and the "oxidizing reactor" contained diluted O2. Mass spectrometry showed that most of the H2S is taken up by the sample in the "fuel reactor" part, while also some unwanted SO2 is generated in the "fuel reactor" part. Most of the sulfur is released in the oxidizing reactor. Simultaneous in situ X-ray absorption spectroscopy (XAS) of the Mn materials during different stages of the chemical looping desulfurization process showed that the initial Mn3O4 is transformed in the presence of H2S to MnS via a MnO intermediate in the fuel reactor. Oxygen from the reduction of Mn3O4 oxidizes some H2S to the undesired SO2 in the fuel reactor. Upon exposure to O2, MnS is again oxidized to Mn3O4 via MnO, releasing SO2. The presence of CO and/or CH4 in the fuel reactor has no effect on this mechanism. Measuring the structure-performance relationship of gas cleaning materials with in situ methods will enable knowledge-based materials development for improved performance. © 2013 Elsevier Ltd. All rights reserved. |
Author | König, C.F.J. van Garderen, N. Schildhauer, T.J. Clemens, F. Nachtegaal, M. Biollaz, S.M.A. Seemann, M. |
Author_xml | – sequence: 1 givenname: C.F.J. surname: König fullname: König, C.F.J. organization: Paul Scherrer Institut, Villigen, Switzerland – sequence: 2 givenname: M. surname: Nachtegaal fullname: Nachtegaal, M. organization: Paul Scherrer Institut, Villigen, Switzerland – sequence: 3 givenname: M. surname: Seemann fullname: Seemann, M. organization: Chalmers University of Technology, Göteborg, Sweden – sequence: 4 givenname: F. surname: Clemens fullname: Clemens, F. organization: Swiss Federal Laboratories for Materials Science and Technology, Dübendorf, Switzerland – sequence: 5 givenname: N. surname: van Garderen fullname: van Garderen, N. organization: Swiss Federal Laboratories for Materials Science and Technology, Dübendorf, Switzerland – sequence: 6 givenname: S.M.A. surname: Biollaz fullname: Biollaz, S.M.A. organization: Paul Scherrer Institut, Villigen, Switzerland – sequence: 7 givenname: T.J. surname: Schildhauer fullname: Schildhauer, T.J. email: tilman.schildhauer@psi.ch organization: Paul Scherrer Institut, Villigen, Switzerland |
BackLink | https://research.chalmers.se/publication/185000$$DView record from Swedish Publication Index |
BookMark | eNqFUcuO1DAQtNAiMbvwC8hHLgltx3ndQCte0q44ABI3q2N3djzKxMGdLDt8PckOcOXULXVVqbrqUlyMcSQhXirIFajq9SHHiUZKd6dcgypyMDnU5ROxU02ts1ap5kLsoIAq05Vqn4lL5gMAaKVhJ-5vye1xDDwHJ3lefCCWsZduT8fgcJBDjFMY76QnXoZ-SeEXziGOG-Z2zDpk8jI-hPUsF96AYZQc5kV-zxKeJHYc0_TI4IncnCK7OJ2ei6c9Dkwv_swr8e39u6_XH7Obzx8-Xb-9yZzRas76uu6gKZTxWnUF1DWYhkrsNPYtIqAGDVVTaUXOoS6rvjSmRFPotkJSVVtciS9nXf5J09LZKYUjppONGGwiJkxub9cAhiMltkzWo-q7Xte2a5rSGtB-3craooe2103bFp5W1Vdn1SnFHwvxbI-BHQ0DjhQXtqqEsjC1hs1AdYa69XNO1P-zoMBu9dmD_Vuf3eqzYOxa30p8cybSGs99oGTZBRod-ZDWHK2P4X8SvwE6IatI |
CitedBy_id | crossref_primary_10_1016_j_fuel_2017_04_095 crossref_primary_10_1021_acs_energyfuels_3c00402 crossref_primary_10_1021_acs_energyfuels_6b01446 crossref_primary_10_1016_j_fuel_2021_120463 crossref_primary_10_1021_acs_energyfuels_0c00989 crossref_primary_10_1016_j_fuel_2018_03_013 crossref_primary_10_1016_j_micromeso_2014_02_017 crossref_primary_10_1021_ef501790e crossref_primary_10_1107_S1600577518005325 crossref_primary_10_1016_j_apenergy_2013_09_031 crossref_primary_10_1016_j_powtec_2015_10_047 crossref_primary_10_1016_j_fuproc_2021_106937 crossref_primary_10_1021_acsomega_0c02787 crossref_primary_10_1016_j_seppur_2018_06_040 |
Cites_doi | 10.1002/cjce.5450740522 10.1080/01614940701375134 10.1016/j.fuel.2010.12.034 10.1107/S0909049500016964 10.1146/annurev.energy.25.1.199 10.1205/cherd.05206 10.1021/ie071310u 10.1016/j.ces.2008.02.001 10.1016/j.clay.2011.02.008 10.1016/j.fuel.2010.09.039 10.1021/es990787x 10.1016/j.biombioe.2007.12.007 10.1016/j.fuel.2010.01.027 10.1021/ef101337v 10.2533/chimia.2012.699 10.1021/ef00050a024 10.1021/ef900714q 10.1063/1.556031 10.1021/ie071224u 10.1007/s13399-012-0032-8 10.1016/j.cej.2003.08.022 10.1007/s13399-012-0042-6 10.1016/S0961-9534(02)00037-5 10.1021/ef300274p 10.1021/ef00048a004 10.1016/S0926-860X(00)00843-7 10.1021/ef00048a003 10.1016/j.fuel.2010.11.028 10.1021/ef9010109 10.1016/j.fuproc.2010.02.005 |
ContentType | Journal Article |
Copyright | 2013 Elsevier Ltd |
Copyright_xml | – notice: 2013 Elsevier Ltd |
DBID | AAYXX CITATION 7ST C1K SOI ADTPV AOWAS F1S |
DOI | 10.1016/j.apenergy.2013.04.075 |
DatabaseName | CrossRef Environment Abstracts Environmental Sciences and Pollution Management Environment Abstracts SwePub SwePub Articles SWEPUB Chalmers tekniska högskola |
DatabaseTitle | CrossRef Environment Abstracts Environmental Sciences and Pollution Management |
DatabaseTitleList | Environment Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Environmental Sciences |
EISSN | 1872-9118 |
EndPage | 1901 |
ExternalDocumentID | oai_research_chalmers_se_da1fbf27_b885_402d_b857_ad09f28993de 10_1016_j_apenergy_2013_04_075 S0306261913003711 |
GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARJD AAXUO AAYOK ABEFU ABFNM ABJNI ABMAC ABTAH ABXDB ABYKQ ACDAQ ACGFS ACNNM ACRLP ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHIDL AHJVU AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BELTK BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W JARJE JJJVA KOM LY6 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SAC SDF SDG SES SEW SPC SPCBC SSR SST SSZ T5K TN5 WUQ ZY4 ~02 ~G- AAHBH AAXKI AAYXX ACRPL ADNMO AFJKZ AKRWK CITATION 7ST C1K SOI ADTPV AOWAS F1S |
ID | FETCH-LOGICAL-c421t-f77b08314d21b3077048e5ab2af9aa0a202068621ecca256f5445a43296ae1693 |
IEDL.DBID | .~1 |
ISSN | 0306-2619 1872-9118 |
IngestDate | Tue Oct 01 22:27:34 EDT 2024 Fri Oct 25 00:31:50 EDT 2024 Fri Dec 06 05:07:03 EST 2024 Fri Feb 23 02:36:59 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Gas cleaning Biomass XAS Chemical looping Manganese |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c421t-f77b08314d21b3077048e5ab2af9aa0a202068621ecca256f5445a43296ae1693 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 1505347209 |
PQPubID | 23462 |
PageCount | 7 |
ParticipantIDs | swepub_primary_oai_research_chalmers_se_da1fbf27_b885_402d_b857_ad09f28993de proquest_miscellaneous_1505347209 crossref_primary_10_1016_j_apenergy_2013_04_075 elsevier_sciencedirect_doi_10_1016_j_apenergy_2013_04_075 |
PublicationCentury | 2000 |
PublicationDate | January 2014 2014-01-00 20140101 2014 |
PublicationDateYYYYMMDD | 2014-01-01 |
PublicationDate_xml | – month: 01 year: 2014 text: January 2014 |
PublicationDecade | 2010 |
PublicationTitle | Applied energy |
PublicationYear | 2014 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Phillips (b0040) 2007; 46 Pecho, Schildhauer, Sturzenegger, Biollaz, Wokaun (b0050) 2008; 63 van Garderen, Clemens, Mezzomo, Bergmann, Graule (b0085) 2011; 52 Bartholomew (b0035) 2001; 212 Abdala, Safonova, Wiker, van Beek, Emerich, van Bokhoven (b0140) 2012; 66 Cheah, Olstad, Jablonski, Magrini-Bair (b0090) 2011; 25 HSC. HSC Chemistry 7.0, Chemical Reaction and Equilibrium Software, Outotec. Johannson, Mattisson, Lyngfelt (b0135) 2006; 84 Lind, Israelsson, Seemann, Thunman (b0065) 2012; 2 Kaufman Rechulski, Schneebeli, Geiger, Schildhauer, Biollaz, Ludwig (b0030) 2012; 26 Mendiara, Johansen, Utrilla, Geraldo, Jensen, Glarborg (b0075) 2011; 90 Newville (b0145) 2001; 8 Hofbauer, Veronik, Fleck, Rauch (b0055) 1997 Meng, de Jong, Pal, Verkooijen (b0105) 2010; 91 Tijmensen, Faaij, Hamelinck, van Hardeveld (b0010) 2002; 23 Solunke, Veser (b0165) 2011; 90 Deurwaarder EP, Boerrgter H, Mozaffarian M, Rabou LPLM, van der Drift B. Methanation of milena product gas for the production of bio-SNG. Technical report, ECN Report, ECN-RX-05-194. Presented at 14th European biomass conference and exhibition, Paris, France; 17–21 October, 2005. Torres, Pansare, Goodwin (b0100) 2007; 49 Ressler, Wong, Roos, Smith (b0155) 2000; 34 Wang, Weller, Jones, Hanna (b0015) 2008; 32 Berguerand, Lind, Seemann, Thunman (b0070) 2012; 2 Ben-Slimane, Hepworth (b0120) 1994; 8 Cheah, Carpenter, Magrini-Bair (b0095) 2009; 23 Cui, Turn, Keffer, Evans, Tran, Foley (b0025) 2010; 24 Kheshgi, Prince, Marland (b0005) 2000; 25 Rosman, Taylor (b0160) 1998; 27 Mendiara, Johansen, Utrilla, Geraldo, Jensen, Glarborg (b0080) 2011; 90 Bakker, Vriesendorp, Kapteijn, Moulijn (b0110) 1996; 74 Anthony (b0045) 2008; 47 Kopyscinski, Schildhauer, Biollaz (b0020) 2010; 89 Bakker W J, Kapteijn, Moulijn J (b0115) 2003; 96 Ben-Slimane, Hepworth (b0125) 1994; 8 Ben-Slimane, Hepworth (b0130) 1995; 9 Bartholomew (10.1016/j.apenergy.2013.04.075_b0035) 2001; 212 Hofbauer (10.1016/j.apenergy.2013.04.075_b0055) 1997 Bakker (10.1016/j.apenergy.2013.04.075_b0110) 1996; 74 10.1016/j.apenergy.2013.04.075_b0150 Mendiara (10.1016/j.apenergy.2013.04.075_b0075) 2011; 90 Anthony (10.1016/j.apenergy.2013.04.075_b0045) 2008; 47 Ressler (10.1016/j.apenergy.2013.04.075_b0155) 2000; 34 Phillips (10.1016/j.apenergy.2013.04.075_b0040) 2007; 46 van Garderen (10.1016/j.apenergy.2013.04.075_b0085) 2011; 52 Cheah (10.1016/j.apenergy.2013.04.075_b0095) 2009; 23 Kopyscinski (10.1016/j.apenergy.2013.04.075_b0020) 2010; 89 Johannson (10.1016/j.apenergy.2013.04.075_b0135) 2006; 84 Solunke (10.1016/j.apenergy.2013.04.075_b0165) 2011; 90 Newville (10.1016/j.apenergy.2013.04.075_b0145) 2001; 8 Kheshgi (10.1016/j.apenergy.2013.04.075_b0005) 2000; 25 10.1016/j.apenergy.2013.04.075_b0060 Ben-Slimane (10.1016/j.apenergy.2013.04.075_b0125) 1994; 8 Abdala (10.1016/j.apenergy.2013.04.075_b0140) 2012; 66 Bakker W J (10.1016/j.apenergy.2013.04.075_b0115) 2003; 96 Cui (10.1016/j.apenergy.2013.04.075_b0025) 2010; 24 Rosman (10.1016/j.apenergy.2013.04.075_b0160) 1998; 27 Pecho (10.1016/j.apenergy.2013.04.075_b0050) 2008; 63 Mendiara (10.1016/j.apenergy.2013.04.075_b0080) 2011; 90 Tijmensen (10.1016/j.apenergy.2013.04.075_b0010) 2002; 23 Torres (10.1016/j.apenergy.2013.04.075_b0100) 2007; 49 Cheah (10.1016/j.apenergy.2013.04.075_b0090) 2011; 25 Meng (10.1016/j.apenergy.2013.04.075_b0105) 2010; 91 Lind (10.1016/j.apenergy.2013.04.075_b0065) 2012; 2 Kaufman Rechulski (10.1016/j.apenergy.2013.04.075_b0030) 2012; 26 Ben-Slimane (10.1016/j.apenergy.2013.04.075_b0120) 1994; 8 Ben-Slimane (10.1016/j.apenergy.2013.04.075_b0130) 1995; 9 Wang (10.1016/j.apenergy.2013.04.075_b0015) 2008; 32 Berguerand (10.1016/j.apenergy.2013.04.075_b0070) 2012; 2 |
References_xml | – volume: 25 start-page: 379 year: 2011 end-page: 387 ident: b0090 article-title: Regenerable manganese-based sorbent for cleanup of simulated biomass-derived syngas publication-title: Energy Fuels contributor: fullname: Magrini-Bair – volume: 8 start-page: 1184 year: 1994 end-page: 1191 ident: b0125 article-title: Desulfurization of hot coal-derived fuel gases with manganese-based regenerable sorbents. 2. Regeneration and multicycle tests publication-title: Energy Fuels contributor: fullname: Hepworth – volume: 212 start-page: 17 year: 2001 end-page: 60 ident: b0035 article-title: Mechanisms of catalyst deactivation publication-title: Appl Catal A contributor: fullname: Bartholomew – volume: 84 start-page: 807 year: 2006 end-page: 818 ident: b0135 article-title: Investigation of Mn publication-title: Chem Eng Res Des contributor: fullname: Lyngfelt – volume: 34 start-page: 950 year: 2000 end-page: 958 ident: b0155 article-title: Quantitative speciation of Mn-bearing particulates emitted from autos burning (methylcyclopentadienyl) manganese tricarbonyl-added gasolines using XANES spectroscopy publication-title: Environ Sci Technol contributor: fullname: Smith – volume: 74 start-page: 713 year: 1996 end-page: 718 ident: b0110 article-title: Sorbent development for continuous regenerative H publication-title: Can J Chem Eng contributor: fullname: Moulijn – volume: 24 start-page: 1222 year: 2010 end-page: 1233 ident: b0025 article-title: Contaminant estimates and removal in product gas from biomass steam gasification publication-title: Energy Fuels contributor: fullname: Foley – year: 1997 ident: b0055 article-title: Developments in thermochemical biomass conversion contributor: fullname: Rauch – volume: 2 start-page: 245 year: 2012 end-page: 252 ident: b0070 article-title: Producer gas cleaning in a dual fluidized bed reformer – a comparative study of performance with ilmenite and a manganese oxide as catalysts publication-title: Biomass Convers Biorefin contributor: fullname: Thunman – volume: 8 start-page: 1175 year: 1994 end-page: 1183 ident: b0120 article-title: Desulfurization of hot coal-derived fuel gases with manganese-based regenerable sorbents. 1. Loading (sulfidation) tests publication-title: Energy Fuels contributor: fullname: Hepworth – volume: 52 start-page: 115 year: 2011 end-page: 121 ident: b0085 article-title: Investigation of clay content and sintering temperature on attrition resistance of highly porous diatomite based material publication-title: Appl Clay Sci contributor: fullname: Graule – volume: 8 start-page: 322 year: 2001 end-page: 324 ident: b0145 article-title: IFEFFIT: interactive EXAFS analysis and FEFF fitting publication-title: J Synchrotron Rad contributor: fullname: Newville – volume: 89 start-page: 1763 year: 2010 end-page: 1783 ident: b0020 article-title: Production of synthetic natural gas (SNG) from coal and dry biomass – a technology review from 1950 to 2009 publication-title: Fuel contributor: fullname: Biollaz – volume: 91 start-page: 964 year: 2010 end-page: 981 ident: b0105 article-title: In bed and downstream hot gas desulphurization during solid fuel gasification: A review publication-title: Fuel Proc Technol contributor: fullname: Verkooijen – volume: 27 start-page: 1275 year: 1998 end-page: 1287 ident: b0160 article-title: Isotopic composition of the elements 1997 publication-title: J Phys Chem Ref Data contributor: fullname: Taylor – volume: 23 start-page: 129 year: 2002 end-page: 152 ident: b0010 article-title: Exploration of the possibilities for production of fischer tropsch liquids and power via biomass gasification publication-title: Biomass Bioenergy contributor: fullname: van Hardeveld – volume: 26 start-page: 6358 year: 2012 end-page: 6365 ident: b0030 article-title: Liquid-quench sampling system for the analysis of gas streams from biomass gasification processes. Part 2: Sampling condensable compounds publication-title: Energy Fuels contributor: fullname: Ludwig – volume: 23 start-page: 5291 year: 2009 end-page: 5307 ident: b0095 article-title: Review of mid- to high-temperature sulfur sorbents for desulfurization of biomass- and coal-derived syngas publication-title: Energy Fuels contributor: fullname: Magrini-Bair – volume: 32 start-page: 573 year: 2008 end-page: 581 ident: b0015 article-title: Contemporary issues in thermal gasification of biomass and its application to electricity and fuel production publication-title: Biomass Bioenergy contributor: fullname: Hanna – volume: 96 start-page: 223 year: 2003 end-page: 235 ident: b0115 article-title: A high capacity manganese-based sorbent for regenerative high temperature desulfurization with direct sulfur production. Conceptual process application to coal gas cleaning publication-title: Chem Eng J contributor: fullname: Moulijn J – volume: 25 start-page: 199 year: 2000 end-page: 244 ident: b0005 article-title: The potential of biomass fuels in the context of global climate change: Focus on transportation fuels publication-title: Annu Rev Energy Environ contributor: fullname: Marland – volume: 2 start-page: 133 year: 2012 end-page: 140 ident: b0065 article-title: Manganese oxide as catalyst for tar cleaning of biomass-derived gas publication-title: Biomass Convers Biorefin contributor: fullname: Thunman – volume: 49 start-page: 407 year: 2007 end-page: 456 ident: b0100 article-title: Hot gas removal of tars, ammonia, and hydrogen sulfide from biomass gasification gas publication-title: Catal Rev contributor: fullname: Goodwin – volume: 9 start-page: 372 year: 1995 end-page: 378 ident: b0130 article-title: Desulfurization of hot coal-derived fuel gases with manganese-based regenerable sorbents. 3. Fixed-bed testing publication-title: Energy Fuels contributor: fullname: Hepworth – volume: 66 start-page: 699 year: 2012 end-page: 705 ident: b0140 article-title: Scientific opportunities for heterogeneous catalysis research at the SuperXAS and SNBL beam lines publication-title: Chimia contributor: fullname: van Bokhoven – volume: 47 start-page: 1747 year: 2008 end-page: 1754 ident: b0045 article-title: Solid looping cycles: A new technology for coal conversion publication-title: Ind Eng Chem Res contributor: fullname: Anthony – volume: 63 start-page: 2465 year: 2008 end-page: 2476 ident: b0050 article-title: Reactive bed materials for improved biomass gasification in a circulating fluidised bed reactor publication-title: Chem Eng Sci contributor: fullname: Wokaun – volume: 90 start-page: 608 year: 2011 end-page: 617 ident: b0165 article-title: Integrating desulfurization with CO publication-title: Fuel contributor: fullname: Veser – volume: 90 start-page: 1370 year: 2011 end-page: 1382 ident: b0080 article-title: Evaluation of different oxygen carriers for biomass tar reforming (II): Carbon deposition in experiments with methane and other gases publication-title: Fuel contributor: fullname: Glarborg – volume: 46 start-page: 8887 year: 2007 end-page: 8897 ident: b0040 article-title: Technoeconomic analysis of a lignocellulosic biomass indirect gasification process to make ethanol via mixed alcohols synthesis publication-title: Ind Eng Chem Res contributor: fullname: Phillips – volume: 90 start-page: 1049 year: 2011 end-page: 1060 ident: b0075 article-title: Evaluation of different oxygen carriers for biomass tar reforming (I): Carbon deposition in experiments with toluene publication-title: Fuel contributor: fullname: Glarborg – volume: 74 start-page: 713 year: 1996 ident: 10.1016/j.apenergy.2013.04.075_b0110 article-title: Sorbent development for continuous regenerative H2S removal in a rotating monolith reactor publication-title: Can J Chem Eng doi: 10.1002/cjce.5450740522 contributor: fullname: Bakker – ident: 10.1016/j.apenergy.2013.04.075_b0060 – volume: 49 start-page: 407 year: 2007 ident: 10.1016/j.apenergy.2013.04.075_b0100 article-title: Hot gas removal of tars, ammonia, and hydrogen sulfide from biomass gasification gas publication-title: Catal Rev doi: 10.1080/01614940701375134 contributor: fullname: Torres – volume: 90 start-page: 1370 year: 2011 ident: 10.1016/j.apenergy.2013.04.075_b0080 article-title: Evaluation of different oxygen carriers for biomass tar reforming (II): Carbon deposition in experiments with methane and other gases publication-title: Fuel doi: 10.1016/j.fuel.2010.12.034 contributor: fullname: Mendiara – volume: 8 start-page: 322 year: 2001 ident: 10.1016/j.apenergy.2013.04.075_b0145 article-title: IFEFFIT: interactive EXAFS analysis and FEFF fitting publication-title: J Synchrotron Rad doi: 10.1107/S0909049500016964 contributor: fullname: Newville – volume: 25 start-page: 199 year: 2000 ident: 10.1016/j.apenergy.2013.04.075_b0005 article-title: The potential of biomass fuels in the context of global climate change: Focus on transportation fuels publication-title: Annu Rev Energy Environ doi: 10.1146/annurev.energy.25.1.199 contributor: fullname: Kheshgi – year: 1997 ident: 10.1016/j.apenergy.2013.04.075_b0055 contributor: fullname: Hofbauer – volume: 84 start-page: 807 year: 2006 ident: 10.1016/j.apenergy.2013.04.075_b0135 article-title: Investigation of Mn3O4 with stabilized ZrO2 for chemical-looping combustion publication-title: Chem Eng Res Des doi: 10.1205/cherd.05206 contributor: fullname: Johannson – ident: 10.1016/j.apenergy.2013.04.075_b0150 – volume: 47 start-page: 1747 year: 2008 ident: 10.1016/j.apenergy.2013.04.075_b0045 article-title: Solid looping cycles: A new technology for coal conversion publication-title: Ind Eng Chem Res doi: 10.1021/ie071310u contributor: fullname: Anthony – volume: 63 start-page: 2465 year: 2008 ident: 10.1016/j.apenergy.2013.04.075_b0050 article-title: Reactive bed materials for improved biomass gasification in a circulating fluidised bed reactor publication-title: Chem Eng Sci doi: 10.1016/j.ces.2008.02.001 contributor: fullname: Pecho – volume: 52 start-page: 115 year: 2011 ident: 10.1016/j.apenergy.2013.04.075_b0085 article-title: Investigation of clay content and sintering temperature on attrition resistance of highly porous diatomite based material publication-title: Appl Clay Sci doi: 10.1016/j.clay.2011.02.008 contributor: fullname: van Garderen – volume: 90 start-page: 608 year: 2011 ident: 10.1016/j.apenergy.2013.04.075_b0165 article-title: Integrating desulfurization with CO2-capture in chemical-looping combustion publication-title: Fuel doi: 10.1016/j.fuel.2010.09.039 contributor: fullname: Solunke – volume: 34 start-page: 950 year: 2000 ident: 10.1016/j.apenergy.2013.04.075_b0155 article-title: Quantitative speciation of Mn-bearing particulates emitted from autos burning (methylcyclopentadienyl) manganese tricarbonyl-added gasolines using XANES spectroscopy publication-title: Environ Sci Technol doi: 10.1021/es990787x contributor: fullname: Ressler – volume: 32 start-page: 573 year: 2008 ident: 10.1016/j.apenergy.2013.04.075_b0015 article-title: Contemporary issues in thermal gasification of biomass and its application to electricity and fuel production publication-title: Biomass Bioenergy doi: 10.1016/j.biombioe.2007.12.007 contributor: fullname: Wang – volume: 89 start-page: 1763 year: 2010 ident: 10.1016/j.apenergy.2013.04.075_b0020 article-title: Production of synthetic natural gas (SNG) from coal and dry biomass – a technology review from 1950 to 2009 publication-title: Fuel doi: 10.1016/j.fuel.2010.01.027 contributor: fullname: Kopyscinski – volume: 25 start-page: 379 year: 2011 ident: 10.1016/j.apenergy.2013.04.075_b0090 article-title: Regenerable manganese-based sorbent for cleanup of simulated biomass-derived syngas publication-title: Energy Fuels doi: 10.1021/ef101337v contributor: fullname: Cheah – volume: 66 start-page: 699 year: 2012 ident: 10.1016/j.apenergy.2013.04.075_b0140 article-title: Scientific opportunities for heterogeneous catalysis research at the SuperXAS and SNBL beam lines publication-title: Chimia doi: 10.2533/chimia.2012.699 contributor: fullname: Abdala – volume: 9 start-page: 372 year: 1995 ident: 10.1016/j.apenergy.2013.04.075_b0130 article-title: Desulfurization of hot coal-derived fuel gases with manganese-based regenerable sorbents. 3. Fixed-bed testing publication-title: Energy Fuels doi: 10.1021/ef00050a024 contributor: fullname: Ben-Slimane – volume: 23 start-page: 5291 year: 2009 ident: 10.1016/j.apenergy.2013.04.075_b0095 article-title: Review of mid- to high-temperature sulfur sorbents for desulfurization of biomass- and coal-derived syngas publication-title: Energy Fuels doi: 10.1021/ef900714q contributor: fullname: Cheah – volume: 27 start-page: 1275 year: 1998 ident: 10.1016/j.apenergy.2013.04.075_b0160 article-title: Isotopic composition of the elements 1997 publication-title: J Phys Chem Ref Data doi: 10.1063/1.556031 contributor: fullname: Rosman – volume: 46 start-page: 8887 year: 2007 ident: 10.1016/j.apenergy.2013.04.075_b0040 article-title: Technoeconomic analysis of a lignocellulosic biomass indirect gasification process to make ethanol via mixed alcohols synthesis publication-title: Ind Eng Chem Res doi: 10.1021/ie071224u contributor: fullname: Phillips – volume: 2 start-page: 245 year: 2012 ident: 10.1016/j.apenergy.2013.04.075_b0070 article-title: Producer gas cleaning in a dual fluidized bed reformer – a comparative study of performance with ilmenite and a manganese oxide as catalysts publication-title: Biomass Convers Biorefin doi: 10.1007/s13399-012-0032-8 contributor: fullname: Berguerand – volume: 96 start-page: 223 year: 2003 ident: 10.1016/j.apenergy.2013.04.075_b0115 article-title: A high capacity manganese-based sorbent for regenerative high temperature desulfurization with direct sulfur production. Conceptual process application to coal gas cleaning publication-title: Chem Eng J doi: 10.1016/j.cej.2003.08.022 contributor: fullname: Bakker W J – volume: 2 start-page: 133 year: 2012 ident: 10.1016/j.apenergy.2013.04.075_b0065 article-title: Manganese oxide as catalyst for tar cleaning of biomass-derived gas publication-title: Biomass Convers Biorefin doi: 10.1007/s13399-012-0042-6 contributor: fullname: Lind – volume: 23 start-page: 129 year: 2002 ident: 10.1016/j.apenergy.2013.04.075_b0010 article-title: Exploration of the possibilities for production of fischer tropsch liquids and power via biomass gasification publication-title: Biomass Bioenergy doi: 10.1016/S0961-9534(02)00037-5 contributor: fullname: Tijmensen – volume: 26 start-page: 6358 year: 2012 ident: 10.1016/j.apenergy.2013.04.075_b0030 article-title: Liquid-quench sampling system for the analysis of gas streams from biomass gasification processes. Part 2: Sampling condensable compounds publication-title: Energy Fuels doi: 10.1021/ef300274p contributor: fullname: Kaufman Rechulski – volume: 8 start-page: 1184 year: 1994 ident: 10.1016/j.apenergy.2013.04.075_b0125 article-title: Desulfurization of hot coal-derived fuel gases with manganese-based regenerable sorbents. 2. Regeneration and multicycle tests publication-title: Energy Fuels doi: 10.1021/ef00048a004 contributor: fullname: Ben-Slimane – volume: 212 start-page: 17 year: 2001 ident: 10.1016/j.apenergy.2013.04.075_b0035 article-title: Mechanisms of catalyst deactivation publication-title: Appl Catal A doi: 10.1016/S0926-860X(00)00843-7 contributor: fullname: Bartholomew – volume: 8 start-page: 1175 year: 1994 ident: 10.1016/j.apenergy.2013.04.075_b0120 article-title: Desulfurization of hot coal-derived fuel gases with manganese-based regenerable sorbents. 1. Loading (sulfidation) tests publication-title: Energy Fuels doi: 10.1021/ef00048a003 contributor: fullname: Ben-Slimane – volume: 90 start-page: 1049 year: 2011 ident: 10.1016/j.apenergy.2013.04.075_b0075 article-title: Evaluation of different oxygen carriers for biomass tar reforming (I): Carbon deposition in experiments with toluene publication-title: Fuel doi: 10.1016/j.fuel.2010.11.028 contributor: fullname: Mendiara – volume: 24 start-page: 1222 year: 2010 ident: 10.1016/j.apenergy.2013.04.075_b0025 article-title: Contaminant estimates and removal in product gas from biomass steam gasification publication-title: Energy Fuels doi: 10.1021/ef9010109 contributor: fullname: Cui – volume: 91 start-page: 964 year: 2010 ident: 10.1016/j.apenergy.2013.04.075_b0105 article-title: In bed and downstream hot gas desulphurization during solid fuel gasification: A review publication-title: Fuel Proc Technol doi: 10.1016/j.fuproc.2010.02.005 contributor: fullname: Meng |
SSID | ssj0002120 |
Score | 2.2291205 |
Snippet | •Mn sorbents remove H2S from hot syngas in chemical looping desulfurization process.•State of Mn followed by in situ X-ray absorption spectroscopy and mass... Cleaning of producer gas from biomass gasification is required for further processing, e.g. to avoid catalyst poisoning in subsequent conversion steps.... |
SourceID | swepub proquest crossref elsevier |
SourceType | Open Access Repository Aggregation Database Publisher |
StartPage | 1895 |
SubjectTerms | Biomass Chemical looping Gas cleaning Manganese XAS |
Title | Mechanistic studies of chemical looping desulfurization of Mn-based oxides using in situ X-ray absorption spectroscopy |
URI | https://dx.doi.org/10.1016/j.apenergy.2013.04.075 https://search.proquest.com/docview/1505347209 https://research.chalmers.se/publication/185000 |
Volume | 113 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Na9wwEBUhvaSH0CYN3bQNKvSqrC1La_sYQsK2yebSBvYmJEtqHYK9rNehufS3d0aWmy0UesjNHzIIzWj0ZM17Q8gnWTmLyJsBtpBMaDNjpRcVcxz8K0UFsVA_ZXEzm9-KL0u53CHnIxcG0ypj7B9ieojW8ck0juZ0VdfTr4h2Ef_jgUyWB36vkAlWMTj99ZTmwaM0IzRm2HqLJXx3qlcuMOwwxSsLkqeYb_jvBWobgG6LioaF6PIV2Y8Ikp4NnXxNdlxzQF5u6QoekKOLJ_oaNI3ztzskDwuHTN8gzky7IYWQtp5WUTaA3reBQEWt6_p7368jSxPbLBqGS56l7c8aXlPMmP9O64Z29aanS7bWj1Sbrl2HIEQDhROlMtvV4xtye3nx7XzOYuUFVgmebpjPc4MlyITlqYEokMM8d1Ibrn2pdaI5gEyklqToAACaPEr6aJHxcqYdyrsckd2mbdxbQk3ufKalETDZIShDULMowFMkhleF18WETMfhVqtBYEONmWd3ajSQQgOpRCgw0ISUo1XUX66iYBX477cfRzMqmEd4OKIb1_adAmAsM5HzpJyQ68G-f_qDEtxRe-mHAjNhYZtOdU5ZnXrjea5MUUgFW3ELVzJX2ialx61sZt3xM7r7juzBnRh--bwnu5t17z4ACNqYk-DlJ-TF2eer-c1v0VQJVw |
link.rule.ids | 230,314,780,784,885,4024,4502,24116,27923,27924,27925,45585,45679 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3BbtQwELWq9gAcEBQqFigYiau7iWNvkmNVtVpgtxdaaW-WHduQqkpWmw2iF769M45DFwmJA7conkiWZzx-juc9E_JRVs4i8maALSQT2sxY6UXFHIf4SlFBLNyfsrycza_F55Vc7ZGzkQuDZZUx9w85PWTr-GYaR3O6ruvpV0S7iP_xQCbLkd97ICSgXwjqk18PdR48ajOCNUPzHZrwzYleu0CxwxqvLGieYsHh31eoXQS6qyoaVqKLZ-RphJD0dOjlc7LnmkPyZEdY8JAcnT_w18A0TuDuBfmxdEj1DerMtBtqCGnraRV1A-htGxhU1Lquv_X9JtI00WbZMFzzLG1_1tBMsWT-G60b2tXbnq7YRt9Rbbp2E7IQDRxO1Mps13cvyfXF-dXZnMWrF1gleLplPs8N3kEmLE8NpIEcJrqT2nDtS60TzQFlIrckxQgA1ORR00eLjJcz7VDf5YjsN23jXhFqcuczLY2A2Q5ZGbKaRQWeIjG8KrwuJmQ6DrdaDwobaiw9u1GjgxQ6SCVCgYMmpBy9ov6IFQXLwD-__TC6UcFEwtMR3bi27xQgY5mJnCflhCwG__7uD2pwR_Gl7wrchDfbdKpzyurUG89zZYpCKtiLW3iSudI2KT3uZTPrXv9Hd9-TR_Or5UItPl1-eUMeQ4sY_v-8JfvbTe-OARFtzbsQ8ffw4Ar0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mechanistic+studies+of+chemical+looping+desulfurization+of+Mn-based+oxides+using+in+situ+X-ray+absorption+spectroscopy&rft.jtitle=Applied+energy&rft.au=K%C3%B6nig%2C+C.F.J.&rft.au=Nachtegaal%2C+M.&rft.au=Seemann%2C+Martin&rft.au=Clemens%2C+F.&rft.date=2014&rft.issn=0306-2619&rft.volume=113&rft.spage=1895&rft_id=info:doi/10.1016%2Fj.apenergy.2013.04.075&rft.externalDocID=oai_research_chalmers_se_da1fbf27_b885_402d_b857_ad09f28993de |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-2619&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-2619&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-2619&client=summon |