Strong Interactions between Austenite and the Matrix of Medium-Mn Steel during Intercritical Annealing

The effects of heat treatment on the microstructure evolution was studied in regards to austenite nucleation and grain growth. It was found that the austenite nucleation and matrix recrystallization kinetics of samples annealed at 675 °C for different times were revealed, implying a strong interacti...

Full description

Saved in:
Bibliographic Details
Published inMaterials Vol. 13; no. 15; p. 3366
Main Authors Zhou, Tianpeng, Wang, Cunyu, Wang, Chang, Cao, Wenquan, Chen, Zejun
Format Journal Article
LanguageEnglish
Published MDPI 29.07.2020
MDPI AG
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The effects of heat treatment on the microstructure evolution was studied in regards to austenite nucleation and grain growth. It was found that the austenite nucleation and matrix recrystallization kinetics of samples annealed at 675 °C for different times were revealed, implying a strong interaction between the ferrite matrix and austenite. The recrystallization of the matrix during annealing provided favorable conditions for austenite nucleation and growth, and the formation of austenite during this process reduced the matrix recrystallization kinetics, thus delaying the recrystallization process of the matrix around the austenite grains. The statistical results for the austenite grain size under different annealing temperatures indicated that the average grain size of the austenite slightly increases with increasing of the annealing temperature, but the austenite with the largest grain size grows faster at the same temperature. This difference is attributed to the strict Kurdjumov Sachs (KS) orientation relationship (OR) between the austenite grains and the matrix, because the growth of austenite with a strict KS OR with the matrix is often inhibited during annealing. In contrast, the austenite maintains a non-strict KS OR with the matrix and can grow preferentially with increasing annealing temperature and time.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1996-1944
1996-1944
DOI:10.3390/ma13153366