The distributions and geochemical implications of methylated 2-methyl-2-(4,8, 12-trimethyltridecyl)chromans in immature sediments

Methylated 2-methyl-2-(4,8,12-trimethyltridecyl)chromans are salinity-sensitive biomarkers that have been detected in immature – early mature petroleum and sediments. In this study, the occurrence and distribution patterns of 2-methyl-2-(4,8,12-trimethyltridecyl)chromans were investigated in a set o...

Full description

Saved in:
Bibliographic Details
Published inEnergy exploration & exploitation Vol. 40; no. 1; pp. 343 - 358
Main Authors Wang, Xin, Li, Meijun, Fang, Ronghui, Lai, Hongfei, Lu, Xiaolin, Liu, Xiaoqiang
Format Journal Article
LanguageEnglish
Published London, England SAGE Publications 01.01.2022
Sage Publications Ltd
SAGE Publishing
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Methylated 2-methyl-2-(4,8,12-trimethyltridecyl)chromans are salinity-sensitive biomarkers that have been detected in immature – early mature petroleum and sediments. In this study, the occurrence and distribution patterns of 2-methyl-2-(4,8,12-trimethyltridecyl)chromans were investigated in a set of lacustrine sediments from Nördlinger Ries of southern Germany and marine sediments from the South China Sea. Among all of the 2-methyl-2-(4,8,12-trimethyltridecyl)chroman isomers detected, 8-Me-2-methyl-2-(4,8,12-trimethyltridecyl)chroman presented with high abundance in sediments deposited in hypersaline environments, while absent in samples from normal marine environments. In contrast, 5,7,8-triMe-2-methyl-2-(4,8,12-trimethyltridecyl)chroman was more enriched in sediments from marine environments. This study also showed that the ratio of 5,7,8-triMe-/5,8-diMe-2-methyl-2-(4,8,12-trimethyltridecyl)chroman can be applied as a potential salinity indicator on account of a positive correlation with other 2-methyl-2-(4,8,12-trimethyltridecyl)chroman salinity indicators. This ratio can be an alternative indicator of paleosalinity when 8-Me-2-methyl-2-(4,8,12-trimethyltridecyl)chroman is absent or present in quite low abundance. The content of 2-methyl-2-(4,8,12-trimethyltridecyl)chroman isomers may be affected by freshwater supply and lithology. Molecular simulations showed that 5,8-diMe-2-methyl-2-(4,8,12-trimethyltridecyl)chroman has a higher thermal dynamic stability than 7,8-diMe-2-methyl-2-(4,8,12-trimethyltridecyl)chroman. Thus, the ratio of 5,8-diMe-2-methyl-2-(4,8,12-trimethyltridecyl)chroman/7,8-diMe-2-methyl-2-(4,8,12-trimethyltridecyl)chroman may be a potential maturity parameter for sediments at a low thermal mature stage.
ISSN:0144-5987
2048-4054
DOI:10.1177/01445987211033342