A deoxyribozyme-based molecular automaton
We describe a molecular automaton, called MAYA, which encodes a version of the game of tic-tac-toe and interactively competes against a human opponent. The automaton is a Boolean network of deoxyribozymes that incorporates 23 molecular-scale logic gates and one constitutively active deoxyribozyme ar...
Saved in:
Published in | Nature biotechnology Vol. 21; no. 9; pp. 1069 - 1074 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
New York, NY
Nature
01.09.2003
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | We describe a molecular automaton, called MAYA, which encodes a version of the game of tic-tac-toe and interactively competes against a human opponent. The automaton is a Boolean network of deoxyribozymes that incorporates 23 molecular-scale logic gates and one constitutively active deoxyribozyme arrayed in nine wells (3x3) corresponding to the game board. To make a move, MAYA carries out an analysis of the input oligonucleotide keyed to a particular move by the human opponent and indicates a move by fluorescence signaling in a response well. The cycle of human player input and automaton response continues until there is a draw or a victory for the automaton. The automaton cannot be defeated because it implements a perfect strategy. |
---|---|
Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
ISSN: | 1087-0156 1546-1696 |
DOI: | 10.1038/nbt862 |