Sorption of CO2 and CH4 on Raw and Calcined Halloysite—Structural and Pore Characterization Study

The article presents comparative characteristics of the pore structure and sorption properties of raw halloysite (R-HAL) and after calcination (C-HAL) at the temperature of 873 K. Structural parameters were determined by optical scanning and transmission electron microscopy methods as well as by mer...

Full description

Saved in:
Bibliographic Details
Published inMaterials Vol. 13; no. 4; p. 917
Main Authors Pajdak, Anna, Skoczylas, Norbert, Szymanek, Arkadiusz, Lutyński, Marcin, Sakiewicz, Piotr
Format Journal Article
LanguageEnglish
Published MDPI 19.02.2020
MDPI AG
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The article presents comparative characteristics of the pore structure and sorption properties of raw halloysite (R-HAL) and after calcination (C-HAL) at the temperature of 873 K. Structural parameters were determined by optical scanning and transmission electron microscopy methods as well as by mercury porosimetry (MIP, Hg) and low-pressure nitrogen adsorption (LPNA, N2, 77 K). The surface area parameter (LPNA) of halloysite mesopores before calcination was 54–61 m2/g. Calcining caused the pore surface to develop to 70–73 m2/g. The porosity (MIP) of halloysite after calcination increased from 29% to 46%, while the surface area within macropores increased from 43 m2/g to 54 m2/g. The total pore volume within mesopores and macropores increased almost twice after calcination. The course of CH4 and CO2 sorption on the halloysite was examined and sorption isotherms (0–1.5 MPa, 313 K) were determined by gravimetric method. The values of equilibrium sorption capacities increased at higher pressures. The sorption capacity of CH4 in R-HAL was 0.18 mmol/g, while in C-HAL 0.21 mmol/g. CO2 sorption capacities were 0.54 mmol/g and 0.63 mmol/g, respectively. Halloysite had a very high rate of sorption equilibrium. The values of the effective diffusion coefficient for methane on the tested halloysite were higher than De > 4.2 × 10−7 cm2/s while for carbon dioxide De > 3.1 × 10−7 cm2/s.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1996-1944
1996-1944
DOI:10.3390/ma13040917