Subject-Specific Finite Element Simulation of Bone Grafting Procedure for Osteonecrosis of Femoral Head

Based on the unilateral CT images of a patient in stage III for osteonecrosis of the femoral head, three subject-specific three-dimensional finite element models of proximal femur are developed by reverse engineering method, including normal model, necrosis model and prothetic model. Based on the sa...

Full description

Saved in:
Bibliographic Details
Published inMultidiscipline modeling in materials and structures Vol. 4; no. 4; pp. 359 - 368
Main Authors Lian, Zhi-Qiang, Gu, Yuan-Xian, Zhang, Hong-Wu
Format Journal Article
LanguageEnglish
Published Bingley Emerald Group Publishing Limited 01.01.2008
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Based on the unilateral CT images of a patient in stage III for osteonecrosis of the femoral head, three subject-specific three-dimensional finite element models of proximal femur are developed by reverse engineering method, including normal model, necrosis model and prothetic model. Based on the same CT set, the material properties are assigned to each finite element model. Then, by finite element analysis, the process of bone grafting for osteonecrosis of the femoral head is simulated. The results indicate that when the necrosis parts of femoral head are removed, the stresses and displacements of proximal femur increase correspondingly, but after the surgery of bone grafting, the stresses and displacements of proximal femur efficiently decrease and become more close to the normal state. The results are useful for a better understanding of the procedure of the bone grafting surgery.
Bibliography:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
ISSN:1573-6105
1573-6113
DOI:10.1163/157361108785963019