Entanglement Distribution in Optical Networks

The ability to generate entangled photon pairs over a broad wavelength range opens the door to the simultaneous distribution of entanglement to multiple users in a network by using centralized sources and flexible wavelength-division multiplexing schemes. Here, we show the design of a metropolitan o...

Full description

Saved in:
Bibliographic Details
Published inIEEE journal of selected topics in quantum electronics Vol. 21; no. 3; pp. 37 - 48
Main Authors Ciurana, Alex, Martin, Vicente, Martinez-Mateo, Jesus, Schrenk, Bernhard, Peev, Momtchil, Poppe, Andreas
Format Journal Article
LanguageEnglish
Published New York IEEE 01.05.2015
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The ability to generate entangled photon pairs over a broad wavelength range opens the door to the simultaneous distribution of entanglement to multiple users in a network by using centralized sources and flexible wavelength-division multiplexing schemes. Here, we show the design of a metropolitan optical network consisting of tree-type access networks, whereby entangled photon pairs are distributed to any pair of users, independent of their location. The network is constructed employing commercial off-the-shelf components and uses the existing infrastructure, which allows for moderate deployment costs. We further develop a channel plan and a network-architecture design to provide a direct optical path between any pair of users; thus, allowing classical and one-way quantum communication, as well as entanglement distribution. This allows the simultaneous operation of multiple quantum information technologies. Finally, we present a more flexible backbone architecture that pushes away the load limitations of the original network design by extending its reach, number of users and capabilities.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1077-260X
1558-4542
DOI:10.1109/JSTQE.2014.2367241