Neuronal age influences the response to neurite outgrowth inhibitory activity in the central and peripheral nervous systems
Axonal regeneration is abortive in the central nervous system (CNS) of adult mammals, but readily occurs in the injured peripheral nervous system (PNS). Recent experiments indicate an important role for both intrinsic neuronal features and extrinsic substrate properties in determining the propensity...
Saved in:
Published in | Brain research Vol. 836; no. 1; pp. 49 - 61 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
London
Elsevier B.V
31.07.1999
Amsterdam Elsevier New York, NY |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Axonal regeneration is abortive in the central nervous system (CNS) of adult mammals, but readily occurs in the injured peripheral nervous system (PNS). Recent experiments indicate an important role for both intrinsic neuronal features and extrinsic substrate properties in determining the propensity for axonal regrowth. In particular, certain components of adult mammalian CNS myelin have been shown to exert a strong inhibitory influence on neurite outgrowth. To determine whether the potent neurite outgrowth inhibitory activity found in CNS myelin may also be present in PNS myelin and to study the influence of neuronal age on neurite outgrowth, we used a cryoculture assay in which dissociated rat dorsal root ganglion (DRG) neurons of different ages were challenged to extend neurites on fractionated myelin and cryostat sections from the PNS (sciatic nerve and myelin-free degenerated sciatic nerve) and CNS (optic nerve) of adult rats. The CNS environment of the optic nerve did not support E17 to P8 DRG neurite adhesion or outgrowth. E17 DRG neurons, unlike their older counterparts, however, were able to attach and extend neurites onto normal sciatic nerve and onto purified PNS myelin. In contrast, a vigorous neurite outgrowth response from all the ages tested was observed on the myelin-free degenerated sciatic nerve. These results indicate that PNS myelin is a potent inhibitor of neurite outgrowth and that DRG neuronal age plays an important role in determining the propensity for neurite outgrowth and regenerative response on inhibitory PNS and CNS substrata. |
---|---|
Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
ISSN: | 0006-8993 1872-6240 |
DOI: | 10.1016/S0006-8993(99)01588-7 |