Shelf-Life Management and Ripening Assessment of 'Hass' Avocado ( Persea americana ) Using Deep Learning Approaches

Avocado production is mostly confined to tropical and subtropical regions, leading to lengthy distribution channels that, coupled with their unpredictable post-harvest behavior, render avocados susceptible to significant loss and waste. To enhance the monitoring of 'Hass' avocado ripening,...

Full description

Saved in:
Bibliographic Details
Published inFoods Vol. 13; no. 8; p. 1150
Main Authors Xavier, Pedro, Rodrigues, Pedro Miguel, Silva, Cristina L M
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 01.04.2024
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Avocado production is mostly confined to tropical and subtropical regions, leading to lengthy distribution channels that, coupled with their unpredictable post-harvest behavior, render avocados susceptible to significant loss and waste. To enhance the monitoring of 'Hass' avocado ripening, a data-driven tool was developed using a deep learning approach. This study involved monitoring 478 avocados stored in three distinct storage environments, using a 5-stage Ripening Index to classify each fruit's ripening phase based on their shared characteristics. These categories were paired with daily photographic records of the avocados, resulting in a database of labeled images. Two convolutional neural network models, AlexNet and ResNet-18, were trained using transfer learning techniques to identify distinct ripening indicators, enabling the prediction of ripening stages and shelf-life estimations for new unseen data. The approach achieved a final prediction accuracy of 88.8% for the ripening assessment, with 96.7% of predictions deviating by no more than half a stage from their actual classifications when considering the best side of the samples. The average shelf-life estimates based on the attributed classifications were within 0.92 days of the actual shelf-life, whereas the predictions made by the models had an average deviation of 0.96 days from the actual shelf-life.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2304-8158
2304-8158
DOI:10.3390/foods13081150