Vaccination with a Plasmodium chabaudi adami multivalent DNA vaccine cross-protects A/J mice against challenge with P. c. adami DK and virulent Plasmodium chabaudi chabaudi AS parasites

A current goal of malaria vaccine research is the development of vaccines that will cross-protect against multiple strains of malaria. In the present study, the breadth of cross-reactivity induced by a 30K multivalent DNA vaccine has been evaluated in susceptible A/J mice (H-2a) against infection wi...

Full description

Saved in:
Bibliographic Details
Published inInternational journal for parasitology Vol. 38; no. 7; pp. 819 - 827
Main Authors Scorza, T., Grubb, K., Cambos, M., Santamaria, C., Malu, D. Tshikudi, Spithill, T.W.
Format Journal Article
LanguageEnglish
Published Oxford Elsevier Ltd 01.06.2008
Elsevier Science
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:A current goal of malaria vaccine research is the development of vaccines that will cross-protect against multiple strains of malaria. In the present study, the breadth of cross-reactivity induced by a 30K multivalent DNA vaccine has been evaluated in susceptible A/J mice (H-2a) against infection with the Plasmodium chabaudi adami DK strain and a virulent parasite subspecies, Plasmodium chabaudi chabaudi AS. Immunized A/J mice were significantly protected against infection with both P. c. adami DK (31–40% reduction in cumulative parasitemia) and P. c. chabaudi AS parasites, where a 30–39% reduction in cumulative parasitemia as well as enhanced survival was observed. The 30K vaccine-induced specific IFN-γ production by splenocytes in response to native antigens from both P. c. chabaudi AS and P. c. adami DK. Specific antibodies reacting with surface antigens expressed on P. c. adami DS and P. c. chabaudi AS infected red blood cells, and with opsonizing properties, were detected. These results suggest that multivalent vaccines encoding conserved antigens can feasibly induce immune cross-reactivity that span Plasmodium strains and subspecies and can protect hosts of distinct major histocompatibility complex haplotypes.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0020-7519
1879-0135
DOI:10.1016/j.ijpara.2007.10.009