A Complex-Valued Projection Neural Network for Constrained Optimization of Real Functions in Complex Variables

In this paper, we present a complex-valued projection neural network for solving constrained convex optimization problems of real functions with complex variables, as an extension of real-valued projection neural networks. Theoretically, by developing results on complex-valued optimization technique...

Full description

Saved in:
Bibliographic Details
Published inIEEE transaction on neural networks and learning systems Vol. 26; no. 12; pp. 3227 - 3238
Main Authors Zhang, Songchuan, Xia, Youshen, Wang, Jun
Format Journal Article
LanguageEnglish
Published United States IEEE 01.12.2015
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In this paper, we present a complex-valued projection neural network for solving constrained convex optimization problems of real functions with complex variables, as an extension of real-valued projection neural networks. Theoretically, by developing results on complex-valued optimization techniques, we prove that the complex-valued projection neural network is globally stable and convergent to the optimal solution. Obtained results are completely established in the complex domain and thus significantly generalize existing results of the real-valued projection neural networks. Numerical simulations are presented to confirm the obtained results and effectiveness of the proposed complex-valued projection neural network.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2162-237X
2162-2388
DOI:10.1109/TNNLS.2015.2441697