Current Status of Haploidization in Cool-Season Grain Legume Crop Species

Doubled haploid technology is, so far, the fastest route to induce a true homozygous state in plants. True homozygous plants are particularly important for breeders, as they can facilitate hybrid breeding and are useful in fixing traits in a breeding line. Fabaceae species are of great importance in...

Full description

Saved in:
Bibliographic Details
Published inAgriculture (Basel) Vol. 14; no. 7; p. 1031
Main Authors Skrzypkowski, Wiktor, Kiełkowska, Agnieszka
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.07.2024
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Doubled haploid technology is, so far, the fastest route to induce a true homozygous state in plants. True homozygous plants are particularly important for breeders, as they can facilitate hybrid breeding and are useful in fixing traits in a breeding line. Fabaceae species are of great importance in food and feed production; however, they are far behind other families with respect to the development of effective haploidization protocols. Here, we present the most recent status of research on haploidization protocols in cool-season grain legume crops, including dry peas, chickpeas, faba beans, lentils, lupines, and grass peas. The first four species are primarily for human consumption; the latter are utilized as forage. All the mentioned species have been subject to haploidization trials; however, repeatable protocols, including the regeneration of confirmed haploid or doubled haploid plants, have not been elaborated. Research in field pea, chickpea, grass pea, and lupine is promising, with the reported regeneration of microspore-derived embryos in all four species. Repeatable plant regeneration has been reported only in field peas and chickpeas. The most recent achievements on haploidization through male and female gametophytes in faba bean are also presented. The key factors for the effective stimulation of haploid cell development in cool-season legumes are reviewed, providing a useful basis for future efforts toward haploidization in this group.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2077-0472
2077-0472
DOI:10.3390/agriculture14071031