The pathobiology of psychomotor slowing in psychosis: altered cortical excitability and connectivity

Abstract Psychomotor slowing is a frequent symptom of schizophrenia. Short-interval intracortical inhibition assessed by transcranial magnetic stimulation demonstrated inhibitory dysfunction in schizophrenia. The inhibitory deficit results from additional noise during information processing in the m...

Full description

Saved in:
Bibliographic Details
Published inBrain (London, England : 1878) Vol. 147; no. 4; pp. 1423 - 1435
Main Authors Lefebvre, Stephanie, Gehrig, Gwendolyn, Nadesalingam, Niluja, Nuoffer, Melanie G, Kyrou, Alexandra, Wüthrich, Florian, Walther, Sebastian
Format Journal Article
LanguageEnglish
Published UK Oxford University Press 04.04.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Abstract Psychomotor slowing is a frequent symptom of schizophrenia. Short-interval intracortical inhibition assessed by transcranial magnetic stimulation demonstrated inhibitory dysfunction in schizophrenia. The inhibitory deficit results from additional noise during information processing in the motor system in psychosis. Here, we tested whether cortical inhibitory dysfunction was linked to psychomotor slowing and motor network alterations. In this cross-sectional study, we included 60 patients with schizophrenia and psychomotor slowing determined by the Salpêtrière Retardation Rating Scale, 23 patients without slowing and 40 healthy control participants. We acquired single and double-pulse transcranial magnetic stimulation effects from the left primary motor cortex, resting-state functional connectivity and diffusion imaging on the same day. Groups were compared on resting motor threshold, amplitude of the motor evoked potentials, as well as short-interval intracortical inhibition. Regression analyses calculated the association between motor evoked potential amplitudes or cortical inhibition with seed-based resting-state functional connectivity from the left primary motor cortex and fractional anisotropy at whole brain level and within major motor tracts. In patients with schizophrenia and psychomotor slowing, we observed lower amplitudes of motor evoked potentials, while the short-interval intracortical inhibition/motor evoked potentials amplitude ratio was higher than in healthy controls, suggesting lower cortical inhibition in these patients. Patients without slowing also had lower amplitudes of motor evoked potentials. Across the combined patient sample, cortical inhibition deficits were linked to more motor coordination impairments. In patients with schizophrenia and psychomotor slowing, lower amplitudes of motor evoked potentials were associated with lower fractional anisotropy in motor tracts. Moreover, resting-state functional connectivity between the primary motor cortex, the anterior cingulate cortex and the cerebellum increased with stronger cortical inhibition. In contrast, in healthy controls and patients without slowing, stronger cortical inhibition was linked to lower resting-state functional connectivity between the left primary motor cortex and premotor or parietal cortices. Psychomotor slowing in psychosis is linked to less cortical inhibition and aberrant functional connectivity of the primary motor cortex. Higher neural noise in the motor system may drive psychomotor slowing and thus may become a treatment target.Lefebvre et al. demonstrate that psychomotor slowing in psychosis is linked to less cortical inhibition and aberrant functional connectivity of the primary motor cortex. They conclude that higher levels of neural noise in the motor system may drive psychomotor slowing and could represent a potential treatment target.
AbstractList Psychomotor slowing is a frequent symptom of schizophrenia. Short-interval intracortical inhibition assessed by transcranial magnetic stimulation demonstrated inhibitory dysfunction in schizophrenia. The inhibitory deficit results from additional noise during information processing in the motor system in psychosis. Here, we tested whether cortical inhibitory dysfunction was linked to psychomotor slowing and motor network alterations. In this cross-sectional study, we included 60 patients with schizophrenia and psychomotor slowing determined by the Salpêtrière Retardation Rating Scale, 23 patients without slowing and 40 healthy control participants. We acquired single and double-pulse transcranial magnetic stimulation effects from the left primary motor cortex, resting-state functional connectivity and diffusion imaging on the same day. Groups were compared on resting motor threshold, amplitude of the motor evoked potentials, as well as short-interval intracortical inhibition. Regression analyses calculated the association between motor evoked potential amplitudes or cortical inhibition with seed-based resting-state functional connectivity from the left primary motor cortex and fractional anisotropy at whole brain level and within major motor tracts. In patients with schizophrenia and psychomotor slowing, we observed lower amplitudes of motor evoked potentials, while the short-interval intracortical inhibition/motor evoked potentials amplitude ratio was higher than in healthy controls, suggesting lower cortical inhibition in these patients. Patients without slowing also had lower amplitudes of motor evoked potentials. Across the combined patient sample, cortical inhibition deficits were linked to more motor coordination impairments. In patients with schizophrenia and psychomotor slowing, lower amplitudes of motor evoked potentials were associated with lower fractional anisotropy in motor tracts. Moreover, resting-state functional connectivity between the primary motor cortex, the anterior cingulate cortex and the cerebellum increased with stronger cortical inhibition. In contrast, in healthy controls and patients without slowing, stronger cortical inhibition was linked to lower resting-state functional connectivity between the left primary motor cortex and premotor or parietal cortices. Psychomotor slowing in psychosis is linked to less cortical inhibition and aberrant functional connectivity of the primary motor cortex. Higher neural noise in the motor system may drive psychomotor slowing and thus may become a treatment target. Lefebvre et al. demonstrate that psychomotor slowing in psychosis is linked to less cortical inhibition and aberrant functional connectivity of the primary motor cortex. They conclude that higher levels of neural noise in the motor system may drive psychomotor slowing and could represent a potential treatment target.
Psychomotor slowing is a frequent symptom of schizophrenia. Short-interval intracortical inhibition assessed by transcranial magnetic stimulation demonstrated inhibitory dysfunction in schizophrenia. The inhibitory deficit results from additional noise during information processing in the motor system in psychosis. Here, we tested whether cortical inhibitory dysfunction was linked to psychomotor slowing and motor network alterations. In this cross-sectional study, we included 60 patients with schizophrenia and psychomotor slowing determined by the Salpêtrière Retardation Rating Scale, 23 patients without slowing and 40 healthy control participants. We acquired single and double-pulse transcranial magnetic stimulation effects from the left primary motor cortex, resting-state functional connectivity and diffusion imaging on the same day. Groups were compared on resting motor threshold, amplitude of the motor evoked potentials, as well as short-interval intracortical inhibition. Regression analyses calculated the association between motor evoked potential amplitudes or cortical inhibition with seed-based resting-state functional connectivity from the left primary motor cortex and fractional anisotropy at whole brain level and within major motor tracts. In patients with schizophrenia and psychomotor slowing, we observed lower amplitudes of motor evoked potentials, while the short-interval intracortical inhibition/motor evoked potentials amplitude ratio was higher than in healthy controls, suggesting lower cortical inhibition in these patients. Patients without slowing also had lower amplitudes of motor evoked potentials. Across the combined patient sample, cortical inhibition deficits were linked to more motor coordination impairments. In patients with schizophrenia and psychomotor slowing, lower amplitudes of motor evoked potentials were associated with lower fractional anisotropy in motor tracts. Moreover, resting-state functional connectivity between the primary motor cortex, the anterior cingulate cortex and the cerebellum increased with stronger cortical inhibition. In contrast, in healthy controls and patients without slowing, stronger cortical inhibition was linked to lower resting-state functional connectivity between the left primary motor cortex and premotor or parietal cortices. Psychomotor slowing in psychosis is linked to less cortical inhibition and aberrant functional connectivity of the primary motor cortex. Higher neural noise in the motor system may drive psychomotor slowing and thus may become a treatment target.Psychomotor slowing is a frequent symptom of schizophrenia. Short-interval intracortical inhibition assessed by transcranial magnetic stimulation demonstrated inhibitory dysfunction in schizophrenia. The inhibitory deficit results from additional noise during information processing in the motor system in psychosis. Here, we tested whether cortical inhibitory dysfunction was linked to psychomotor slowing and motor network alterations. In this cross-sectional study, we included 60 patients with schizophrenia and psychomotor slowing determined by the Salpêtrière Retardation Rating Scale, 23 patients without slowing and 40 healthy control participants. We acquired single and double-pulse transcranial magnetic stimulation effects from the left primary motor cortex, resting-state functional connectivity and diffusion imaging on the same day. Groups were compared on resting motor threshold, amplitude of the motor evoked potentials, as well as short-interval intracortical inhibition. Regression analyses calculated the association between motor evoked potential amplitudes or cortical inhibition with seed-based resting-state functional connectivity from the left primary motor cortex and fractional anisotropy at whole brain level and within major motor tracts. In patients with schizophrenia and psychomotor slowing, we observed lower amplitudes of motor evoked potentials, while the short-interval intracortical inhibition/motor evoked potentials amplitude ratio was higher than in healthy controls, suggesting lower cortical inhibition in these patients. Patients without slowing also had lower amplitudes of motor evoked potentials. Across the combined patient sample, cortical inhibition deficits were linked to more motor coordination impairments. In patients with schizophrenia and psychomotor slowing, lower amplitudes of motor evoked potentials were associated with lower fractional anisotropy in motor tracts. Moreover, resting-state functional connectivity between the primary motor cortex, the anterior cingulate cortex and the cerebellum increased with stronger cortical inhibition. In contrast, in healthy controls and patients without slowing, stronger cortical inhibition was linked to lower resting-state functional connectivity between the left primary motor cortex and premotor or parietal cortices. Psychomotor slowing in psychosis is linked to less cortical inhibition and aberrant functional connectivity of the primary motor cortex. Higher neural noise in the motor system may drive psychomotor slowing and thus may become a treatment target.
Psychomotor slowing is a frequent symptom of schizophrenia. Short-interval intracortical inhibition assessed by transcranial magnetic stimulation demonstrated inhibitory dysfunction in schizophrenia. The inhibitory deficit results from additional noise during information processing in the motor system in psychosis. Here, we tested whether cortical inhibitory dysfunction was linked to psychomotor slowing and motor network alterations. In this cross-sectional study, we included 60 patients with schizophrenia and psychomotor slowing determined by the Salpêtrière Retardation Rating Scale, 23 patients without slowing and 40 healthy control participants. We acquired single and double-pulse transcranial magnetic stimulation effects from the left primary motor cortex, resting-state functional connectivity and diffusion imaging on the same day. Groups were compared on resting motor threshold, amplitude of the motor evoked potentials, as well as short-interval intracortical inhibition. Regression analyses calculated the association between motor evoked potential amplitudes or cortical inhibition with seed-based resting-state functional connectivity from the left primary motor cortex and fractional anisotropy at whole brain level and within major motor tracts. In patients with schizophrenia and psychomotor slowing, we observed lower amplitudes of motor evoked potentials, while the short-interval intracortical inhibition/motor evoked potentials amplitude ratio was higher than in healthy controls, suggesting lower cortical inhibition in these patients. Patients without slowing also had lower amplitudes of motor evoked potentials. Across the combined patient sample, cortical inhibition deficits were linked to more motor coordination impairments. In patients with schizophrenia and psychomotor slowing, lower amplitudes of motor evoked potentials were associated with lower fractional anisotropy in motor tracts. Moreover, resting-state functional connectivity between the primary motor cortex, the anterior cingulate cortex and the cerebellum increased with stronger cortical inhibition. In contrast, in healthy controls and patients without slowing, stronger cortical inhibition was linked to lower resting-state functional connectivity between the left primary motor cortex and premotor or parietal cortices. Psychomotor slowing in psychosis is linked to less cortical inhibition and aberrant functional connectivity of the primary motor cortex. Higher neural noise in the motor system may drive psychomotor slowing and thus may become a treatment target.
Psychomotor slowing is a frequent symptom of schizophrenia. Short-interval intracortical inhibition assessed by transcranial magnetic stimulation demonstrated inhibitory dysfunction in schizophrenia. The inhibitory deficit results from additional noise during information processing in the motor system in psychosis. Here, we tested whether cortical inhibitory dysfunction was linked to psychomotor slowing and motor network alterations. In this cross-sectional study, we included 60 patients with schizophrenia and psychomotor slowing determined by the Salpêtrière Retardation Rating Scale, 23 patients without slowing and 40 healthy control participants. We acquired single and double-pulse transcranial magnetic stimulation effects from the left primary motor cortex, resting-state functional connectivity and diffusion imaging on the same day. Groups were compared on resting motor threshold, amplitude of the motor evoked potentials, as well as short-interval intracortical inhibition. Regression analyses calculated the association between motor evoked potential amplitudes or cortical inhibition with seed-based resting-state functional connectivity from the left primary motor cortex and fractional anisotropy at whole brain level and within major motor tracts. In patients with schizophrenia and psychomotor slowing, we observed lower amplitudes of motor evoked potentials, while the short-interval intracortical inhibition/motor evoked potentials amplitude ratio was higher than in healthy controls, suggesting lower cortical inhibition in these patients. Patients without slowing also had lower amplitudes of motor evoked potentials. Across the combined patient sample, cortical inhibition deficits were linked to more motor coordination impairments. In patients with schizophrenia and psychomotor slowing, lower amplitudes of motor evoked potentials were associated with lower fractional anisotropy in motor tracts. Moreover, resting-state functional connectivity between the primary motor cortex, the anterior cingulate cortex and the cerebellum increased with stronger cortical inhibition. In contrast, in healthy controls and patients without slowing, stronger cortical inhibition was linked to lower resting-state functional connectivity between the left primary motor cortex and premotor or parietal cortices. Psychomotor slowing in psychosis is linked to less cortical inhibition and aberrant functional connectivity of the primary motor cortex. Higher neural noise in the motor system may drive psychomotor slowing and thus may become a treatment target.
Abstract Psychomotor slowing is a frequent symptom of schizophrenia. Short-interval intracortical inhibition assessed by transcranial magnetic stimulation demonstrated inhibitory dysfunction in schizophrenia. The inhibitory deficit results from additional noise during information processing in the motor system in psychosis. Here, we tested whether cortical inhibitory dysfunction was linked to psychomotor slowing and motor network alterations. In this cross-sectional study, we included 60 patients with schizophrenia and psychomotor slowing determined by the Salpêtrière Retardation Rating Scale, 23 patients without slowing and 40 healthy control participants. We acquired single and double-pulse transcranial magnetic stimulation effects from the left primary motor cortex, resting-state functional connectivity and diffusion imaging on the same day. Groups were compared on resting motor threshold, amplitude of the motor evoked potentials, as well as short-interval intracortical inhibition. Regression analyses calculated the association between motor evoked potential amplitudes or cortical inhibition with seed-based resting-state functional connectivity from the left primary motor cortex and fractional anisotropy at whole brain level and within major motor tracts. In patients with schizophrenia and psychomotor slowing, we observed lower amplitudes of motor evoked potentials, while the short-interval intracortical inhibition/motor evoked potentials amplitude ratio was higher than in healthy controls, suggesting lower cortical inhibition in these patients. Patients without slowing also had lower amplitudes of motor evoked potentials. Across the combined patient sample, cortical inhibition deficits were linked to more motor coordination impairments. In patients with schizophrenia and psychomotor slowing, lower amplitudes of motor evoked potentials were associated with lower fractional anisotropy in motor tracts. Moreover, resting-state functional connectivity between the primary motor cortex, the anterior cingulate cortex and the cerebellum increased with stronger cortical inhibition. In contrast, in healthy controls and patients without slowing, stronger cortical inhibition was linked to lower resting-state functional connectivity between the left primary motor cortex and premotor or parietal cortices. Psychomotor slowing in psychosis is linked to less cortical inhibition and aberrant functional connectivity of the primary motor cortex. Higher neural noise in the motor system may drive psychomotor slowing and thus may become a treatment target.Lefebvre et al. demonstrate that psychomotor slowing in psychosis is linked to less cortical inhibition and aberrant functional connectivity of the primary motor cortex. They conclude that higher levels of neural noise in the motor system may drive psychomotor slowing and could represent a potential treatment target.
Author Nuoffer, Melanie G
Nadesalingam, Niluja
Lefebvre, Stephanie
Walther, Sebastian
Gehrig, Gwendolyn
Wüthrich, Florian
Kyrou, Alexandra
Author_xml – sequence: 1
  givenname: Stephanie
  orcidid: 0000-0003-4833-2197
  surname: Lefebvre
  fullname: Lefebvre, Stephanie
  email: Stephanie.lefebvre@unibe.ch
– sequence: 2
  givenname: Gwendolyn
  surname: Gehrig
  fullname: Gehrig, Gwendolyn
– sequence: 3
  givenname: Niluja
  orcidid: 0000-0002-5221-5148
  surname: Nadesalingam
  fullname: Nadesalingam, Niluja
– sequence: 4
  givenname: Melanie G
  orcidid: 0000-0003-4146-4410
  surname: Nuoffer
  fullname: Nuoffer, Melanie G
– sequence: 5
  givenname: Alexandra
  surname: Kyrou
  fullname: Kyrou, Alexandra
– sequence: 6
  givenname: Florian
  orcidid: 0000-0001-6007-8668
  surname: Wüthrich
  fullname: Wüthrich, Florian
– sequence: 7
  givenname: Sebastian
  orcidid: 0000-0003-4026-3561
  surname: Walther
  fullname: Walther, Sebastian
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38537253$$D View this record in MEDLINE/PubMed
BookMark eNqFkc1v1DAQxS1URLcfR67IRy6hThw7CReEqrYgVeJSztbEnuwaee1ge1v2v8fbpgiQECdLM795b_zmhBz54JGQ1zV7V7OBX4wRrL-ABzB8EC_Iqm4lq5payCOyYozJqh8EOyYnKX1jrG55I1-RY94L3jWCr4i52yCdIW_CaIML6z0NE53TXm_CNuQQaXLhwfo1tX4pJ5veU3AZIxqqQ8xWg6P4Q9sMo3U27yn4Q8d71Nnel8IZeTmBS3i-vKfk6_XV3eWn6vbLzefLj7eVbps6V8PU1dwA7_pJMCNhYkPDeK1BCjmyHjhvTT91TSfGBg2glIhosOPlWzDxkZ-SD0-6827cotHocwSn5mi3EPcqgFV_drzdqHW4VyXJoRWiKwpvF4UYvu8wZbW1SaNz4DHskuIlQlZiH0RB3_xu9svlOdsC8CdAx5BSxEkdIso2HLytK6YHX64eL6iWC5ap6q-pZ-F_8cvGYTf_B_0J8AOx1A
CitedBy_id crossref_primary_10_1007_s00406_024_01896_8
crossref_primary_10_1016_j_pscychresns_2024_111823
crossref_primary_10_1038_s41537_025_00563_8
crossref_primary_10_1016_j_cpr_2024_102511
crossref_primary_10_1093_schbul_sbae153
crossref_primary_10_1016_j_bbi_2025_03_024
crossref_primary_10_1038_s41537_024_00534_5
crossref_primary_10_1016_j_neubiorev_2025_106037
crossref_primary_10_1016_j_schres_2025_02_010
Cites_doi 10.1016/j.euroneuro.2020.07.003
10.1093/schbul/sbac170
10.1016/j.schres.2013.04.039
10.1016/j.schres.2020.03.017
10.1038/s41598-018-20245-z
10.3389/fneur.2018.00179
10.1016/j.biopsych.2010.07.024
10.1016/j.pscychresns.2019.04.010
10.1093/cercor/5.2.95
10.1503/jpn.210006
10.1016/j.nbd.2011.01.017
10.1016/j.neuroimage.2011.09.015
10.1016/S0920-9964(99)00047-X
10.1016/j.cortex.2016.09.019
10.1002/hbm.25671
10.3389/fnana.2012.00031
10.1017/S0033291708004716
10.1176/appi.ajp.2007.07081223
10.1016/j.pscychresns.2015.06.010
10.1016/j.schres.2020.01.009
10.1093/schbul/sbx067
10.1093/schbul/sbac120
10.1016/j.nicl.2021.102688
10.1016/0165-1781(89)90148-0
10.1093/schbul/sbs092
10.1111/j.1600-0447.1996.tb09814.x
10.1016/S0920-9964(00)00013-X
10.1038/s41380-022-01721-5
10.1093/brain/awz127
10.1073/pnas.1000496107
10.1016/j.schres.2012.12.004
10.1016/j.schres.2022.10.004
10.1016/j.schres.2014.10.004
10.1016/j.mri.2009.01.006
10.1093/schbul/sbx089
10.1159/000339456
10.1017/S0033291722001817
10.1136/jnnp.67.4.445
10.1016/j.comppsych.2022.152307
10.1016/S0301-0082(96)00042-1
10.1016/j.schres.2014.10.011
10.1038/s41467-019-13239-6
10.1016/j.neuron.2018.10.010
10.1038/s41380-022-01731-3
10.1016/j.biopsych.2018.06.007
10.1016/j.brs.2020.06.015
10.1016/j.euroneuro.2020.05.002
10.1016/j.biopsych.2016.04.007
10.1093/schbul/sbx091
10.1016/j.clinph.2015.02.001
10.1016/j.biopsych.2015.06.026
10.1093/schbul/sbz042
10.1016/j.bionps.2020.100016
10.1371/journal.pone.0111853
10.1093/schbul/sbn126
10.1016/j.pnpbp.2018.03.008
10.1016/j.neuroimage.2013.01.009
10.1016/j.neubiorev.2021.11.027
10.1016/j.neuroimage.2004.07.051
10.1001/jamapsychiatry.2023.4290
10.1016/j.cortex.2022.12.013
10.1111/j.1600-0447.2012.01846.x
10.1016/j.pnpbp.2008.10.010
10.1093/schbul/sbx087
10.1016/j.neuroimage.2022.119029
10.1038/s41380-020-0814-5
10.1093/schbul/sbv037
10.1093/schbul/sbl051
10.1016/j.schres.2008.06.001
10.1038/s41386-022-01453-8
10.1007/s00406-021-01337-w
10.1002/mds.23050
10.1080/00222895.2013.850401
10.1016/j.jpsychires.2021.11.014
10.1111/j.1600-0447.2011.01751.x
10.1038/s41386-020-0691-2
10.1093/schbul/13.2.261
10.1093/schbul/sbaa200
10.1212/WNL.0b013e31820c2ebd
10.1152/physrev.00015.2019
10.1016/j.comppsych.2010.05.009
10.1016/j.neubiorev.2017.06.007
10.1016/j.biopsych.2022.06.017
10.1192/bjp.158.3.340
10.1093/schbul/sbt078
10.1016/j.pnpbp.2018.11.004
10.1016/j.brs.2016.11.006
10.1016/j.neuroimage.2011.10.018
10.1016/j.neuroimage.2007.11.040
10.1016/j.biopsych.2012.03.005
10.1016/S2215-0366(18)30474-7
10.1016/j.clinph.2013.01.014
ContentType Journal Article
Copyright The Author(s) 2023. Published by Oxford University Press on behalf of the Guarantors of Brain. 2023
The Author(s) 2023. Published by Oxford University Press on behalf of the Guarantors of Brain.
Copyright_xml – notice: The Author(s) 2023. Published by Oxford University Press on behalf of the Guarantors of Brain. 2023
– notice: The Author(s) 2023. Published by Oxford University Press on behalf of the Guarantors of Brain.
DBID TOX
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1093/brain/awad395
DatabaseName Oxford Journals Open Access (Activated by CARLI)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
MEDLINE
CrossRef

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: TOX
  name: Oxford Journals Open Access Collection
  url: https://academic.oup.com/journals/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1460-2156
EndPage 1435
ExternalDocumentID PMC10994557
38537253
10_1093_brain_awad395
10.1093/brain/awad395
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Swiss National Science Foundation
  grantid: 182469
– fundername: ;
  grantid: 182469
GroupedDBID ---
-E4
-~X
.2P
.55
.GJ
.I3
.XZ
.ZR
0R~
1CY
1TH
23N
2WC
354
3O-
4.4
41~
482
48X
53G
5GY
5RE
5VS
5WA
5WD
6PF
70D
AABZA
AACZT
AAGKA
AAIMJ
AAJKP
AAJQQ
AAMDB
AAMVS
AAOGV
AAPGJ
AAPNW
AAPQZ
AAPXW
AAQQT
AARHZ
AAUAY
AAUQX
AAVAP
AAVLN
AAWDT
AAWTL
AAYJJ
ABDFA
ABDPE
ABEJV
ABEUO
ABGNP
ABIME
ABIVO
ABIXL
ABJNI
ABKDP
ABLJU
ABMNT
ABNGD
ABNHQ
ABNKS
ABPIB
ABPQP
ABPTD
ABQLI
ABQNK
ABSMQ
ABVGC
ABWST
ABXVV
ABXZS
ABZBJ
ABZEO
ACBNA
ACFRR
ACGFS
ACIWK
ACPQN
ACPRK
ACUFI
ACUKT
ACUTJ
ACUTO
ACVCV
ACYHN
ACZBC
ADBBV
ADEYI
ADEZT
ADGKP
ADGZP
ADHKW
ADHZD
ADIPN
ADMTO
ADNBA
ADOCK
ADQBN
ADRTK
ADVEK
ADYVW
ADZXQ
AEGPL
AEHUL
AEJOX
AEKPW
AEKSI
AELWJ
AEMDU
AEMQT
AENEX
AENZO
AEPUE
AETBJ
AEWNT
AFFNX
AFFQV
AFFZL
AFGWE
AFIYH
AFOFC
AFSHK
AFXAL
AFYAG
AGINJ
AGKEF
AGKRT
AGMDO
AGORE
AGQPQ
AGQXC
AGSYK
AGUTN
AHGBF
AHMBA
AHMMS
AHXPO
AI.
AIJHB
AJBYB
AJDVS
AJEEA
AJNCP
AKWXX
ALMA_UNASSIGNED_HOLDINGS
ALUQC
ALXQX
ANFBD
APIBT
APJGH
APWMN
AQDSO
AQKUS
ARIXL
ASAOO
ASPBG
ATDFG
ATGXG
ATTQO
AVNTJ
AVWKF
AXUDD
AYOIW
AZFZN
BAWUL
BAYMD
BCRHZ
BEYMZ
BHONS
BQDIO
BR6
BSWAC
BTRTY
BVRKM
BZKNY
C1A
C45
CAG
CDBKE
COF
CS3
CXTWN
CZ4
DAKXR
DFGAJ
DIK
DILTD
DU5
D~K
E3Z
EBS
EE~
EIHJH
EJD
ELUNK
EMOBN
ENERS
F5P
F9B
FECEO
FEDTE
FHSFR
FLUFQ
FOEOM
FOTVD
FQBLK
GAUVT
GJXCC
GX1
H13
H5~
HAR
HVGLF
HW0
HZ~
IOX
J21
J5H
JXSIZ
KAQDR
KBUDW
KOP
KQ8
KSI
KSN
L7B
M-Z
MBLQV
MBTAY
MHKGH
ML0
MVM
N4W
N9A
NGC
NLBLG
NOMLY
NOYVH
NTWIH
NU-
NVLIB
O0~
O9-
OAUYM
OAWHX
OBFPC
OBOKY
OCZFY
ODMLO
OHH
OHT
OJQWA
OJZSN
OK1
OPAEJ
OVD
OWPYF
O~Y
P2P
PAFKI
PB-
PEELM
PQQKQ
Q1.
Q5Y
QBD
R44
RD5
RIG
RNI
ROL
ROX
ROZ
RUSNO
RW1
RXO
RZF
RZO
TCN
TCURE
TEORI
TJX
TLC
TMA
TOX
TR2
VH1
VVN
W8F
WH7
WOQ
X7H
X7M
XJT
XOL
YAYTL
YKOAZ
YQJ
YSK
YXANX
ZCG
ZGI
ZKB
ZKX
ZXP
~91
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c421t-9f713da378f50d6af092031ca656b08a334d8f7275b2edae66eeede73143af3b3
IEDL.DBID TOX
ISSN 0006-8950
1460-2156
IngestDate Thu Aug 21 18:34:42 EDT 2025
Fri Jul 11 15:42:08 EDT 2025
Thu Aug 28 04:41:11 EDT 2025
Tue Jul 01 00:46:15 EDT 2025
Thu Apr 24 23:03:26 EDT 2025
Mon Jun 30 08:34:45 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords catatonia
SICI
motor inhibition
resting-state fMRI
diffusion imaging
Language English
License This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
https://creativecommons.org/licenses/by/4.0
The Author(s) 2023. Published by Oxford University Press on behalf of the Guarantors of Brain.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c421t-9f713da378f50d6af092031ca656b08a334d8f7275b2edae66eeede73143af3b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-5221-5148
0000-0003-4833-2197
0000-0001-6007-8668
0000-0003-4026-3561
0000-0003-4146-4410
OpenAccessLink https://dx.doi.org/10.1093/brain/awad395
PMID 38537253
PQID 3014009395
PQPubID 23479
PageCount 13
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_10994557
proquest_miscellaneous_3014009395
pubmed_primary_38537253
crossref_citationtrail_10_1093_brain_awad395
crossref_primary_10_1093_brain_awad395
oup_primary_10_1093_brain_awad395
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-04-04
PublicationDateYYYYMMDD 2024-04-04
PublicationDate_xml – month: 04
  year: 2024
  text: 2024-04-04
  day: 04
PublicationDecade 2020
PublicationPlace UK
PublicationPlace_xml – name: UK
– name: England
PublicationTitle Brain (London, England : 1878)
PublicationTitleAlternate Brain
PublicationYear 2024
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References Nadesalingam (2024040418372059400_awad395-B24) 2023; 49
Wobrock (2024040418372059400_awad395-B77) 2008; 105
Docx (2024040418372059400_awad395-B17) 2012; 126
Gordon (2024040418372059400_awad395-B68) 2019; 90
Houk (2024040418372059400_awad395-B85) 1995; 5
Smith (2024040418372059400_awad395-B70) 2004; 23
Cai (2024040418372059400_awad395-B96) 2021; 47
Sambataro (2024040418372059400_awad395-B13) 2020; 36
Taylor (2024040418372059400_awad395-B45) 2015; 167
Hirjak (2024040418372059400_awad395-B80) 2020; 46
Bush (2024040418372059400_awad395-B63) 1996; 93
Du (2024040418372059400_awad395-B56) 2019; 85
Walther (2024040418372059400_awad395-B4) 2019; 6
Woodward (2024040418372059400_awad395-B29) 2016; 79
Walther (2024040418372059400_awad395-B86) 2024; 81
Magioncalda (2024040418372059400_awad395-B38) 2020; 218
Du (2024040418372059400_awad395-B67) 2014; 46
Gilbert (2024040418372059400_awad395-B50) 2011; 76
Merel (2024040418372059400_awad395-B89) 2019; 10
Morrens (2024040418372059400_awad395-B16) 2007; 33
Cardellicchio (2024040418372059400_awad395-B52) 2018; 8
Hasan (2024040418372059400_awad395-B78) 2012; 72
Jannati (2024040418372059400_awad395-B48) 2023; 48
Mittal (2024040418372059400_awad395-B30) 2017; 43
Whitty (2024040418372059400_awad395-B10) 2009; 35
Tang (2024040418372059400_awad395-B76) 2014; 160
Seitz-Holland (2024040418372059400_awad395-B2) 2022; 27
Peralta (2024040418372059400_awad395-B20) 2001; 47
Bernard (2024040418372059400_awad395-B90) 2012; 6
Widlocher (2024040418372059400_awad395-B59) 1989
Leucht (2024040418372059400_awad395-B65) 2015; 41
Peralta (2024040418372059400_awad395-B8) 2010; 25
Walther (2024040418372059400_awad395-B25) 2015; 233
Hirjak (2024040418372059400_awad395-B36) 2020; 46
Walther (2024040418372059400_awad395-B60) 2022; 263
Peralta (2024040418372059400_awad395-B21) 2011; 52
Viher (2024040418372059400_awad395-B28) 2019; 288
Howes (2024040418372059400_awad395-B40) 2022; 92
Ungvari (2024040418372059400_awad395-B23) 2009; 33
Du (2024040418372059400_awad395-B57) 2017; 10
Bracht (2024040418372059400_awad395-B26) 2013; 143
Walther (2024040418372059400_awad395-B31) 2017; 43
Teremetz (2024040418372059400_awad395-B43) 2014; 9
Walther (2024040418372059400_awad395-B27) 2017; 43
Kasess (2024040418372059400_awad395-B82) 2008; 40
Rossini (2024040418372059400_awad395-B66) 2015; 126
Walther (2024040418372059400_awad395-B72) 2021; 272
Mink (2024040418372059400_awad395-B83) 1996; 50
Ashburner (2024040418372059400_awad395-B74) 2009; 27
Stagg (2024040418372059400_awad395-B95) 2014; 86
Nadesalingam (2024040418372059400_awad395-B12) 2022; 115
Carment (2024040418372059400_awad395-B44) 2019; 142
Sapienza (2024040418372059400_awad395-B3) 2023; 28
Heckers (2024040418372059400_awad395-B1) 2013; 150
Viher (2024040418372059400_awad395-B32) 2020; 220
Telfer (2024040418372059400_awad395-B22) 2011; 124
Carment (2024040418372059400_awad395-B42) 2020; 13
Walther (2024040418372059400_awad395-B5) 2012; 66
Aron (2024040418372059400_awad395-B81) 2011; 69
Northoff (2024040418372059400_awad395-B39) 2021; 26
Hare (2024040418372059400_awad395-B58) 2021; 31
Pappa (2024040418372059400_awad395-B7) 2009; 39
Hashimoto (2024040418372059400_awad395-B46) 2008; 165
Peralta (2024040418372059400_awad395-B9) 2017; 43
Pieters (2024040418372059400_awad395-B14) 2022; 132
Marek (2024040418372059400_awad395-B91) 2018; 100
Moberget (2024040418372059400_awad395-B88) 2019; 4
Rowland (2024040418372059400_awad395-B94) 2013; 39
Rogasch (2024040418372059400_awad395-B55) 2014; 40
Walther (2024040418372059400_awad395-B92) 2011; 42
Maderthaner (2024040418372059400_awad395-B61) 2023; 49
Jenkinson (2024040418372059400_awad395-B69) 2012; 62
Bostan (2024040418372059400_awad395-B84) 2010; 107
Sambataro (2024040418372059400_awad395-B35) 2021; 42
Foucher (2024040418372059400_awad395-B33) 2018; 86
Radwan (2024040418372059400_awad395-B75) 2022; 254
Walther (2024040418372059400_awad395-B79) 2022; 146
Grillner (2024040418372059400_awad395-B87) 2020; 100
Walther (2024040418372059400_awad395-B11) 2020; 38
di Hou (2024040418372059400_awad395-B49) 2021; 46
He (2024040418372059400_awad395-B51) 2018; 9
Wasserthal (2024040418372059400_awad395-B34) 2020; 45
Lindberg (2024040418372059400_awad395-B41) 2016; 85
Liddle (2024040418372059400_awad395-B18) 1991; 158
Osborne (2024040418372059400_awad395-B15) 2020; 2
Power (2024040418372059400_awad395-B73) 2012; 59
Northoff (2024040418372059400_awad395-B47) 1999; 67
Loomes (2024040418372059400_awad395-B53) 2023; 160
Kay (2024040418372059400_awad395-B62) 1987; 13
Cabeen (2024040418372059400_awad395-B71)
Peralta (2024040418372059400_awad395-B19) 1999; 40
Thakkar (2024040418372059400_awad395-B93) 2017; 81
Buchanan (2024040418372059400_awad395-B64) 1989; 27
Radhu (2024040418372059400_awad395-B54) 2013; 124
van Harten (2024040418372059400_awad395-B6) 2017; 80
Martino (2024040418372059400_awad395-B37) 2017; 44
Cai (2024040418372059400_awad395-B97) 2022; 53
References_xml – ident: 2024040418372059400_awad395-B71
– volume: 38
  start-page: 25
  year: 2020
  ident: 2024040418372059400_awad395-B11
  article-title: Movement disorder and sensorimotor abnormalities in schizophrenia and other psychoses—European consensus on assessment and perspectives
  publication-title: Eur Neuropsychopharmacol
  doi: 10.1016/j.euroneuro.2020.07.003
– volume: 49
  start-page: 507
  year: 2023
  ident: 2024040418372059400_awad395-B24
  article-title: The behavioral mapping of psychomotor slowing in psychosis demonstrates heterogeneity among patients suggesting distinct pathobiology
  publication-title: Schizophr Bull
  doi: 10.1093/schbul/sbac170
– volume: 150
  start-page: 11
  year: 2013
  ident: 2024040418372059400_awad395-B1
  article-title: Structure of the psychotic disorders classification in DSM-5
  publication-title: Schizophr Res
  doi: 10.1016/j.schres.2013.04.039
– volume: 220
  start-page: 210
  year: 2020
  ident: 2024040418372059400_awad395-B32
  article-title: Altered diffusion in motor white matter tracts in psychosis patients with catatonia
  publication-title: Schizophr Res
  doi: 10.1016/j.schres.2020.03.017
– volume: 8
  start-page: 1784
  year: 2018
  ident: 2024040418372059400_awad395-B52
  article-title: Early modulation of intra-cortical inhibition during the observation of action mistakes
  publication-title: Sci Rep
  doi: 10.1038/s41598-018-20245-z
– volume: 9
  start-page: 179
  year: 2018
  ident: 2024040418372059400_awad395-B51
  article-title: Interhemispheric cortical inhibition is reduced in young adults with developmental coordination disorder
  publication-title: Front Neurol.
  doi: 10.3389/fneur.2018.00179
– volume: 69
  start-page: e55
  year: 2011
  ident: 2024040418372059400_awad395-B81
  article-title: From reactive to proactive and selective control: Developing a richer model for stopping inappropriate responses
  publication-title: Biol Psychiatry
  doi: 10.1016/j.biopsych.2010.07.024
– volume: 288
  start-page: 44
  year: 2019
  ident: 2024040418372059400_awad395-B28
  article-title: Aberrant fronto-striatal connectivity and fine motor function in schizophrenia
  publication-title: Psychiatry Res Neuroimaging
  doi: 10.1016/j.pscychresns.2019.04.010
– volume: 5
  start-page: 95
  year: 1995
  ident: 2024040418372059400_awad395-B85
  article-title: Distributed modular architectures linking basal ganglia, cerebellum, and cerebral cortex: Their role in planning and controlling action
  publication-title: Cereb Cortex
  doi: 10.1093/cercor/5.2.95
– volume: 46
  start-page: E675
  year: 2021
  ident: 2024040418372059400_awad395-B49
  article-title: A systematic review of TMS and neurophysiological biometrics in patients with schizophrenia
  publication-title: J Psychiatry Neurosci
  doi: 10.1503/jpn.210006
– volume: 42
  start-page: 276
  year: 2011
  ident: 2024040418372059400_awad395-B92
  article-title: Alterations of white matter integrity related to motor activity in schizophrenia
  publication-title: Neurobiol Dis
  doi: 10.1016/j.nbd.2011.01.017
– volume: 46
  start-page: 272
  year: 2020
  ident: 2024040418372059400_awad395-B80
  article-title: Going back to kahlbaum's psychomotor (and GABAergic) origins: Is catatonia more than just a motor and dopaminergic syndrome?
  publication-title: Schizophr Bull
– volume: 62
  start-page: 782
  year: 2012
  ident: 2024040418372059400_awad395-B69
  article-title: FSL
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2011.09.015
– volume: 40
  start-page: 245
  year: 1999
  ident: 2024040418372059400_awad395-B19
  article-title: Negative parkinsonian, depressive and catatonic symptoms in schizophrenia: A conflict of paradigms revisited
  publication-title: Schizophr Res
  doi: 10.1016/S0920-9964(99)00047-X
– volume: 85
  start-page: 1
  year: 2016
  ident: 2024040418372059400_awad395-B41
  article-title: Altered cortical processing of motor inhibition in schizophrenia
  publication-title: Cortex
  doi: 10.1016/j.cortex.2016.09.019
– volume: 42
  start-page: 6087
  year: 2021
  ident: 2024040418372059400_awad395-B35
  article-title: Intrinsic neural network dynamics in catatonia
  publication-title: Hum Brain Mapp
  doi: 10.1002/hbm.25671
– volume: 6
  start-page: 31
  year: 2012
  ident: 2024040418372059400_awad395-B90
  article-title: Resting state cortico-cerebellar functional connectivity networks: A comparison of anatomical and self-organizing map approaches
  publication-title: Front Neuroanat
  doi: 10.3389/fnana.2012.00031
– volume: 39
  start-page: 1065
  year: 2009
  ident: 2024040418372059400_awad395-B7
  article-title: Spontaneous movement disorders in antipsychotic-naive patients with first-episode psychoses: A systematic review
  publication-title: Psychol Med
  doi: 10.1017/S0033291708004716
– volume: 165
  start-page: 479
  year: 2008
  ident: 2024040418372059400_awad395-B46
  article-title: Conserved regional patterns of GABA-related transcript expression in the neocortex of subjects with schizophrenia
  publication-title: Am J Psychiatry
  doi: 10.1176/appi.ajp.2007.07081223
– volume: 233
  start-page: 293
  year: 2015
  ident: 2024040418372059400_awad395-B25
  article-title: Psychomotor symptoms of schizophrenia map on the cerebral motor circuit
  publication-title: Psychiatry Res
  doi: 10.1016/j.pscychresns.2015.06.010
– volume: 218
  start-page: 157
  year: 2020
  ident: 2024040418372059400_awad395-B38
  article-title: Intrinsic brain activity of subcortical-cortical sensorimotor system and psychomotor alterations in schizophrenia and bipolar disorder: A preliminary study
  publication-title: Schizophr Res
  doi: 10.1016/j.schres.2020.01.009
– volume: 44
  start-page: 419
  year: 2017
  ident: 2024040418372059400_awad395-B37
  article-title: Abnormal resting-state connectivity in a substantia Nigra-related striato-thalamo-cortical network in a large sample of first-episode drug-naive patients with schizophrenia
  publication-title: Schizophr Bull
  doi: 10.1093/schbul/sbx067
– start-page: 1
  volume-title: Human psychopharmacology: Measures and methods
  year: 1989
  ident: 2024040418372059400_awad395-B59
– volume: 49
  start-page: S104
  issue: Suppl_2
  year: 2023
  ident: 2024040418372059400_awad395-B61
  article-title: Neural correlates of formal thought disorder dimensions in psychosis
  publication-title: Schizophr Bull
  doi: 10.1093/schbul/sbac120
– volume: 31
  start-page: 102688
  year: 2021
  ident: 2024040418372059400_awad395-B58
  article-title: Mapping local and long-distance resting connectivity markers of TMS-related inhibition reduction in schizophrenia
  publication-title: Neuroimage Clin
  doi: 10.1016/j.nicl.2021.102688
– volume: 27
  start-page: 335
  year: 1989
  ident: 2024040418372059400_awad395-B64
  article-title: The neurological evaluation scale (NES): A structured instrument for the assessment of neurological signs in schizophrenia
  publication-title: Psychiatry Res
  doi: 10.1016/0165-1781(89)90148-0
– volume: 4
  start-page: 820
  year: 2019
  ident: 2024040418372059400_awad395-B88
  article-title: Prediction, psychosis, and the cerebellum
  publication-title: Biol Psychiatry Cogn Neurosci Neuroimaging
– volume: 39
  start-page: 1096
  year: 2013
  ident: 2024040418372059400_awad395-B94
  article-title: In vivo measurements of glutamate, GABA, and NAAG in schizophrenia
  publication-title: Schizophr Bull
  doi: 10.1093/schbul/sbs092
– volume: 93
  start-page: 129
  year: 1996
  ident: 2024040418372059400_awad395-B63
  article-title: Catatonia. I. Rating scale and standardized examination
  publication-title: Acta Psychiatr Scand
  doi: 10.1111/j.1600-0447.1996.tb09814.x
– volume: 47
  start-page: 107
  issue: 2–3
  year: 2001
  ident: 2024040418372059400_awad395-B20
  article-title: Motor features in psychotic disorders. I. Factor structure and clinical correlates
  publication-title: Schizophr Res
  doi: 10.1016/S0920-9964(00)00013-X
– volume: 28
  start-page: 59
  year: 2023
  ident: 2024040418372059400_awad395-B3
  article-title: Schizophrenia and psychedelic state: Dysconnection versus hyper-connection. A perspective on two different models of psychosis stemming from dysfunctional integration processes
  publication-title: Mol Psychiatry
  doi: 10.1038/s41380-022-01721-5
– volume: 142
  start-page: 2149
  year: 2019
  ident: 2024040418372059400_awad395-B44
  article-title: Impaired attentional modulation of sensorimotor control and cortical excitability in schizophrenia
  publication-title: Brain
  doi: 10.1093/brain/awz127
– volume: 107
  start-page: 8452
  year: 2010
  ident: 2024040418372059400_awad395-B84
  article-title: The basal ganglia communicate with the cerebellum
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1000496107
– volume: 143
  start-page: 269
  issue: 2–3
  year: 2013
  ident: 2024040418372059400_awad395-B26
  article-title: Altered cortico-basal ganglia motor pathways reflect reduced volitional motor activity in schizophrenia
  publication-title: Schizophr Res
  doi: 10.1016/j.schres.2012.12.004
– volume: 263
  start-page: 131
  year: 2022
  ident: 2024040418372059400_awad395-B60
  article-title: Structural alterations of the motor cortex and higher order cortical areas suggest early neurodevelopmental origin of catatonia in schizophrenia
  publication-title: Schizophr Res
  doi: 10.1016/j.schres.2022.10.004
– volume: 160
  start-page: 124
  issue: 1–3
  year: 2014
  ident: 2024040418372059400_awad395-B76
  article-title: Prolonged cortical silent period among drug-naive subjects at ultra-high risk of psychosis
  publication-title: Schizophr Res
  doi: 10.1016/j.schres.2014.10.004
– volume: 27
  start-page: 1163
  year: 2009
  ident: 2024040418372059400_awad395-B74
  article-title: Computational anatomy with the SPM software
  publication-title: Magn Reson Imaging.
  doi: 10.1016/j.mri.2009.01.006
– volume: 43
  start-page: 956
  year: 2017
  ident: 2024040418372059400_awad395-B9
  article-title: Motor abnormalities: From neurodevelopmental to neurodegenerative through “functional” (neuro)Psychiatric disorders
  publication-title: Schizophr Bull
  doi: 10.1093/schbul/sbx089
– volume: 66
  start-page: 77
  year: 2012
  ident: 2024040418372059400_awad395-B5
  article-title: Motor symptoms and schizophrenia
  publication-title: Neuropsychobiology
  doi: 10.1159/000339456
– volume: 53
  start-page: 4904
  year: 2022
  ident: 2024040418372059400_awad395-B97
  article-title: Anterior cingulate glutamate levels associate with functional activation and connectivity during sensory integration in schizophrenia: A multimodal (1)H-MRS and fMRI study
  publication-title: Psychol Med
  doi: 10.1017/S0033291722001817
– volume: 67
  start-page: 445
  year: 1999
  ident: 2024040418372059400_awad395-B47
  article-title: Decreased density of GABA-A receptors in the left sensorimotor cortex in akinetic catatonia: Investigation of in vivo benzodiazepine receptor binding
  publication-title: J Neurol Neurosurg Psychiatry
  doi: 10.1136/jnnp.67.4.445
– volume: 115
  start-page: 152307
  year: 2022
  ident: 2024040418372059400_awad395-B12
  article-title: Motor abnormalities are associated with poor social and functional outcomes in schizophrenia
  publication-title: Compr Psychiatry
  doi: 10.1016/j.comppsych.2022.152307
– volume: 50
  start-page: 381
  year: 1996
  ident: 2024040418372059400_awad395-B83
  article-title: The basal ganglia: Focused selection and inhibition of competing motor programs
  publication-title: Prog Neurobiol
  doi: 10.1016/S0301-0082(96)00042-1
– volume: 167
  start-page: 84
  issue: 1–3
  year: 2015
  ident: 2024040418372059400_awad395-B45
  article-title: GABA abnormalities in schizophrenia: A methodological review of in vivo studies
  publication-title: Schizophr Res
  doi: 10.1016/j.schres.2014.10.011
– volume: 10
  start-page: 5489
  year: 2019
  ident: 2024040418372059400_awad395-B89
  article-title: Hierarchical motor control in mammals and machines
  publication-title: Nat Commun
  doi: 10.1038/s41467-019-13239-6
– volume: 100
  start-page: 977
  year: 2018
  ident: 2024040418372059400_awad395-B91
  article-title: Spatial and temporal organization of the individual human cerebellum
  publication-title: Neuron
  doi: 10.1016/j.neuron.2018.10.010
– volume: 27
  start-page: 3719
  year: 2022
  ident: 2024040418372059400_awad395-B2
  article-title: Cognitive deficits, clinical variables, and white matter microstructure in schizophrenia: A multisite harmonization study
  publication-title: Mol Psychiatry
  doi: 10.1038/s41380-022-01731-3
– volume: 85
  start-page: 49
  year: 2019
  ident: 2024040418372059400_awad395-B56
  article-title: Aberrant middle prefrontal-motor Cortex connectivity mediates motor inhibitory biomarker in schizophrenia
  publication-title: Biol Psychiatry
  doi: 10.1016/j.biopsych.2018.06.007
– volume: 13
  start-page: 1298
  year: 2020
  ident: 2024040418372059400_awad395-B42
  article-title: Neural noise and cortical inhibition in schizophrenia
  publication-title: Brain Stimul
  doi: 10.1016/j.brs.2020.06.015
– volume: 36
  start-page: 72
  year: 2020
  ident: 2024040418372059400_awad395-B13
  article-title: Moving forward: Distinct sensorimotor abnormalities predict clinical outcome after 6 months in patients with schizophrenia
  publication-title: Eur Neuropsychopharmacol
  doi: 10.1016/j.euroneuro.2020.05.002
– volume: 81
  start-page: 525
  year: 2017
  ident: 2024040418372059400_awad395-B93
  article-title: 7 T proton magnetic resonance spectroscopy of gamma-aminobutyric acid, glutamate, and glutamine reveals altered concentrations in patients with schizophrenia and healthy siblings
  publication-title: Biol Psychiatry
  doi: 10.1016/j.biopsych.2016.04.007
– volume: 43
  start-page: 982
  year: 2017
  ident: 2024040418372059400_awad395-B27
  article-title: Aberrant hyperconnectivity in the motor system at rest is linked to motor abnormalities in schizophrenia Spectrum disorders
  publication-title: Schizophr Bull
  doi: 10.1093/schbul/sbx091
– volume: 126
  start-page: 1071
  year: 2015
  ident: 2024040418372059400_awad395-B66
  article-title: Non-invasive electrical and magnetic stimulation of the brain, spinal cord, roots and peripheral nerves: Basic principles and procedures for routine clinical and research application. An updated report from an I.F.C.N. Committee
  publication-title: Clin Neurophysiol
  doi: 10.1016/j.clinph.2015.02.001
– volume: 79
  start-page: 1016
  year: 2016
  ident: 2024040418372059400_awad395-B29
  article-title: Mapping thalamocortical functional connectivity in chronic and early stages of psychotic disorders
  publication-title: Biol Psychiatry
  doi: 10.1016/j.biopsych.2015.06.026
– volume: 46
  start-page: 202
  year: 2020
  ident: 2024040418372059400_awad395-B36
  article-title: Multimodal magnetic resonance imaging data fusion reveals distinct patterns of abnormal brain structure and function in catatonia
  publication-title: Schizophr Bull
  doi: 10.1093/schbul/sbz042
– volume: 2
  start-page: 100016
  year: 2020
  ident: 2024040418372059400_awad395-B15
  article-title: Psychomotor slowing in schizophrenia: Implications for endophenotype and biomarker development
  publication-title: Biomark Neuropsychiatry
  doi: 10.1016/j.bionps.2020.100016
– volume: 9
  start-page: e111853
  year: 2014
  ident: 2024040418372059400_awad395-B43
  article-title: Deficient grip force control in schizophrenia: Behavioral and modeling evidence for altered motor inhibition and motor noise
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0111853
– volume: 35
  start-page: 415
  year: 2009
  ident: 2024040418372059400_awad395-B10
  article-title: Neurological signs and involuntary movements in schizophrenia: Intrinsic to and informative on systems pathobiology
  publication-title: Schizophr Bull
  doi: 10.1093/schbul/sbn126
– volume: 86
  start-page: 363
  year: 2018
  ident: 2024040418372059400_awad395-B33
  article-title: A double dissociation between two psychotic phenotypes: Periodic catatonia and cataphasia
  publication-title: Prog Neuropsychopharmacol Biol Psychiatry
  doi: 10.1016/j.pnpbp.2018.03.008
– volume: 86
  start-page: 19
  year: 2014
  ident: 2024040418372059400_awad395-B95
  article-title: Magnetic resonance spectroscopy as a tool to study the role of GABA in motor-cortical plasticity
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2013.01.009
– volume: 132
  start-page: 691
  year: 2022
  ident: 2024040418372059400_awad395-B14
  article-title: A systematic review of the prognostic value of motor abnormalities on clinical outcome in psychosis
  publication-title: Neurosci Biobehav Rev
  doi: 10.1016/j.neubiorev.2021.11.027
– volume: 23
  start-page: S208
  issue: Suppl 1
  year: 2004
  ident: 2024040418372059400_awad395-B70
  article-title: Advances in functional and structural MR image analysis and implementation as FSL
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2004.07.051
– volume: 81
  start-page: 7
  year: 2024
  ident: 2024040418372059400_awad395-B86
  article-title: Mapping psychomotor behavior in the brain
  publication-title: JAMA Psychiatry
  doi: 10.1001/jamapsychiatry.2023.4290
– volume: 160
  start-page: 100
  year: 2023
  ident: 2024040418372059400_awad395-B53
  article-title: Is cortical inhibition in primary motor cortex related to executive control?
  publication-title: Cortex
  doi: 10.1016/j.cortex.2022.12.013
– volume: 126
  start-page: 256
  year: 2012
  ident: 2024040418372059400_awad395-B17
  article-title: Parsing the components of the psychomotor syndrome in schizophrenia
  publication-title: Acta Psychiatr Scand
  doi: 10.1111/j.1600-0447.2012.01846.x
– volume: 33
  start-page: 81
  year: 2009
  ident: 2024040418372059400_awad395-B23
  article-title: Schizophrenia with prominent catatonic features (‘catatonic schizophrenia’) III. Latent class analysis of the catatonic syndrome
  publication-title: Prog Neuropsychopharmacol Biol Psychiatry
  doi: 10.1016/j.pnpbp.2008.10.010
– volume: 43
  start-page: 949
  year: 2017
  ident: 2024040418372059400_awad395-B30
  article-title: What can different motor circuits tell US about psychosis? An RDoC perspective
  publication-title: Schizophr Bull
  doi: 10.1093/schbul/sbx087
– volume: 254
  start-page: 119029
  year: 2022
  ident: 2024040418372059400_awad395-B75
  article-title: An atlas of white matter anatomy, its variability, and reproducibility based on constrained spherical deconvolution of diffusion MRI
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2022.119029
– volume: 26
  start-page: 92
  year: 2021
  ident: 2024040418372059400_awad395-B39
  article-title: All roads lead to the motor cortex: Psychomotor mechanisms and their biochemical modulation in psychiatric disorders
  publication-title: Mol Psychiatry
  doi: 10.1038/s41380-020-0814-5
– volume: 41
  start-page: 1397
  year: 2015
  ident: 2024040418372059400_awad395-B65
  article-title: Dose equivalents for second-generation antipsychotic drugs: The classical mean dose method
  publication-title: Schizophr Bull
  doi: 10.1093/schbul/sbv037
– volume: 33
  start-page: 1038
  year: 2007
  ident: 2024040418372059400_awad395-B16
  article-title: Psychomotor slowing in schizophrenia
  publication-title: Schizophr Bull
  doi: 10.1093/schbul/sbl051
– volume: 105
  start-page: 252
  issue: 1–3
  year: 2008
  ident: 2024040418372059400_awad395-B77
  article-title: Reduced cortical inhibition in first-episode schizophrenia
  publication-title: Schizophr Res
  doi: 10.1016/j.schres.2008.06.001
– volume: 48
  start-page: 191
  year: 2023
  ident: 2024040418372059400_awad395-B48
  article-title: Assessing the mechanisms of brain plasticity by transcranial magnetic stimulation
  publication-title: Neuropsychopharmacology
  doi: 10.1038/s41386-022-01453-8
– volume: 43
  start-page: 972
  year: 2017
  ident: 2024040418372059400_awad395-B31
  article-title: Resting-State hyperperfusion of the supplementary motor area in catatonia
  publication-title: Schizophr Bull
– volume: 272
  start-page: 1021
  year: 2021
  ident: 2024040418372059400_awad395-B72
  article-title: Limbic links to paranoia: Increased resting-state functional connectivity between amygdala, hippocampus and orbitofrontal cortex in schizophrenia patients with paranoia
  publication-title: Eur Arch Psychiatry Clin Neurosci
  doi: 10.1007/s00406-021-01337-w
– volume: 25
  start-page: 1068
  year: 2010
  ident: 2024040418372059400_awad395-B8
  article-title: Motor behavior abnormalities in drug-naive patients with schizophrenia spectrum disorders
  publication-title: Mov Disord
  doi: 10.1002/mds.23050
– volume: 46
  start-page: 39
  year: 2014
  ident: 2024040418372059400_awad395-B67
  article-title: Individualized brain inhibition and excitation profile in response to paired-pulse TMS
  publication-title: J Mot Behav
  doi: 10.1080/00222895.2013.850401
– volume: 146
  start-page: 258
  year: 2022
  ident: 2024040418372059400_awad395-B79
  article-title: Low physical activity is associated with two hypokinetic motor abnormalities in psychosis
  publication-title: J Psychiatr Res
  doi: 10.1016/j.jpsychires.2021.11.014
– volume: 124
  start-page: 357
  year: 2011
  ident: 2024040418372059400_awad395-B22
  article-title: Tardive dyskinesia and deficit schizophrenia
  publication-title: Acta Psychiatr Scand
  doi: 10.1111/j.1600-0447.2011.01751.x
– volume: 45
  start-page: 1750
  year: 2020
  ident: 2024040418372059400_awad395-B34
  article-title: Multiparametric mapping of white matter microstructure in catatonia
  publication-title: Neuropsychopharmacology
  doi: 10.1038/s41386-020-0691-2
– volume: 13
  start-page: 261
  year: 1987
  ident: 2024040418372059400_awad395-B62
  article-title: The positive and negative syndrome scale (PANSS) for schizophrenia
  publication-title: Schizophr Bull
  doi: 10.1093/schbul/13.2.261
– volume: 47
  start-page: 1452
  year: 2021
  ident: 2024040418372059400_awad395-B96
  article-title: Neurological soft signs are associated with altered cerebellar-cerebral functional connectivity in schizophrenia
  publication-title: Schizophr Bull
  doi: 10.1093/schbul/sbaa200
– volume: 76
  start-page: 615
  year: 2011
  ident: 2024040418372059400_awad395-B50
  article-title: Motor cortex inhibition: A marker of ADHD behavior and motor development in children
  publication-title: Neurology
  doi: 10.1212/WNL.0b013e31820c2ebd
– volume: 100
  start-page: 271
  year: 2020
  ident: 2024040418372059400_awad395-B87
  article-title: Current principles of motor control, with special reference to vertebrate locomotion
  publication-title: Physiol Rev
  doi: 10.1152/physrev.00015.2019
– volume: 52
  start-page: 139
  year: 2011
  ident: 2024040418372059400_awad395-B21
  article-title: Neuromotor abnormalities in neuroleptic-naive psychotic patients: Antecedents, clinical correlates, and prediction of treatment response
  publication-title: Compr Psychiatry
  doi: 10.1016/j.comppsych.2010.05.009
– volume: 80
  start-page: 476
  year: 2017
  ident: 2024040418372059400_awad395-B6
  article-title: The clinical and prognostic value of motor abnormalities in psychosis, and the importance of instrumental assessment
  publication-title: Neurosci Biobehav Rev
  doi: 10.1016/j.neubiorev.2017.06.007
– volume: 92
  start-page: 501
  year: 2022
  ident: 2024040418372059400_awad395-B40
  article-title: Integrating the neurodevelopmental and dopamine hypotheses of schizophrenia and the role of cortical excitation-inhibition balance
  publication-title: Biol Psychiatry
  doi: 10.1016/j.biopsych.2022.06.017
– volume: 158
  start-page: 340
  year: 1991
  ident: 2024040418372059400_awad395-B18
  article-title: Schizophrenic syndromes and frontal lobe performance
  publication-title: Br J Psychiatry
  doi: 10.1192/bjp.158.3.340
– volume: 40
  start-page: 685
  year: 2014
  ident: 2024040418372059400_awad395-B55
  article-title: Cortical inhibition, excitation, and connectivity in schizophrenia: A review of insights from transcranial magnetic stimulation
  publication-title: Schizophr Bull
  doi: 10.1093/schbul/sbt078
– volume: 90
  start-page: 43
  year: 2019
  ident: 2024040418372059400_awad395-B68
  article-title: Changes in motor cortical excitability in schizophrenia following transcranial direct current stimulation
  publication-title: Prog Neuropsychopharmacol Biol Psychiatry
  doi: 10.1016/j.pnpbp.2018.11.004
– volume: 10
  start-page: 283
  year: 2017
  ident: 2024040418372059400_awad395-B57
  article-title: The role of white matter microstructure in inhibitory deficits in patients with schizophrenia
  publication-title: Brain Stimul
  doi: 10.1016/j.brs.2016.11.006
– volume: 59
  start-page: 2142
  year: 2012
  ident: 2024040418372059400_awad395-B73
  article-title: Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2011.10.018
– volume: 40
  start-page: 828
  year: 2008
  ident: 2024040418372059400_awad395-B82
  article-title: The suppressive influence of SMA on M1 in motor imagery revealed by fMRI and dynamic causal modeling
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2007.11.040
– volume: 72
  start-page: 744
  year: 2012
  ident: 2024040418372059400_awad395-B78
  article-title: Deficient inhibitory cortical networks in antipsychotic-naive subjects at risk of developing first-episode psychosis and first-episode schizophrenia patients: A cross-sectional study
  publication-title: Biol Psychiatry
  doi: 10.1016/j.biopsych.2012.03.005
– volume: 6
  start-page: 610
  year: 2019
  ident: 2024040418372059400_awad395-B4
  article-title: Structure and neural mechanisms of catatonia
  publication-title: Lancet Psychiatry
  doi: 10.1016/S2215-0366(18)30474-7
– volume: 124
  start-page: 1309
  year: 2013
  ident: 2024040418372059400_awad395-B54
  article-title: A meta-analysis of cortical inhibition and excitability using transcranial magnetic stimulation in psychiatric disorders
  publication-title: Clin Neurophysiol
  doi: 10.1016/j.clinph.2013.01.014
SSID ssj0014326
Score 2.534577
Snippet Abstract Psychomotor slowing is a frequent symptom of schizophrenia. Short-interval intracortical inhibition assessed by transcranial magnetic stimulation...
Psychomotor slowing is a frequent symptom of schizophrenia. Short-interval intracortical inhibition assessed by transcranial magnetic stimulation demonstrated...
SourceID pubmedcentral
proquest
pubmed
crossref
oup
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1423
SubjectTerms Cross-Sectional Studies
Evoked Potentials, Motor - physiology
Humans
Neural Inhibition - physiology
Original
Parietal Lobe
Psychotic Disorders
Schizophrenia
Transcranial Magnetic Stimulation - methods
Title The pathobiology of psychomotor slowing in psychosis: altered cortical excitability and connectivity
URI https://www.ncbi.nlm.nih.gov/pubmed/38537253
https://www.proquest.com/docview/3014009395
https://pubmed.ncbi.nlm.nih.gov/PMC10994557
Volume 147
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bS8MwFA6yB_FFvDsvI4L4ZFnXXJr6JuKYyvRlg72VpElwMFpZO6b_3pO2G5sX9LU5LeWcJudLv5zvIHRpqaCGW4fciO9RRTue0L72pGYhwA1CaOQKnPvPvDekjyM2qv935D9Q-BFpK9croS3nUpPIVZNDAnYi-YOX0ZIuoKTsq-bWXk9EzK_FNL_dvZZ81graVnDl1-ORK_mmu4O2a6CIb6vI7qINk-6hzX5Nhe8jDQHGrp_wQkcJZxZXNVXg_WyK80k2h7yEx2l9OR_nN7hkx43GsOks_2Jj856Mi0qs-wPL1I3A0ptUTSUO0LB7P7jreXXLBC-hQafwIgubTi1JKCzzNZfWjwKYtokE2KZ8IcH3WljALEwFRkvDuYEkaUICLpSWKHKIGmmWmmOEg0gQpZlMhOU01DoSgnArOtwoyQPFmuh64cs4qfXEXVuLSVzx2iQuXR_Xrm-iq6X5WyWk8ZvhBQTmT5tF2GKYDo7jkKnJZnlc7hjB3tkcVWFcPooANAkDRppIrAV4aeCkttdH0vFrKbnt-EPKWHjyj5c7RVsBIJ_yeA89Q41iOjPngFwK1QLM_vDUKr_dT23e8h4
linkProvider Oxford University Press
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+pathobiology+of+psychomotor+slowing+in+psychosis%3A+altered+cortical+excitability+and+connectivity&rft.jtitle=Brain+%28London%2C+England+%3A+1878%29&rft.au=Lefebvre%2C+Stephanie&rft.au=Gehrig%2C+Gwendolyn&rft.au=Nadesalingam%2C+Niluja&rft.au=Nuoffer%2C+Melanie+G&rft.date=2024-04-04&rft.issn=1460-2156&rft.eissn=1460-2156&rft.volume=147&rft.issue=4&rft.spage=1423&rft_id=info:doi/10.1093%2Fbrain%2Fawad395&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-8950&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-8950&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-8950&client=summon