TrkA Interacts with and Phosphorylates STAT3 to Enhance Gene Transcription and Promote Breast Cancer Stem Cells in Triple-Negative and HER2-Enriched Breast Cancers
JAK2-STAT3 and TrkA signaling pathways have been separately implicated in aggressive breast cancers; however, whether they are co-activated or undergo functional interaction has not been thoroughly investigated. Herein we report, for the first time that STAT3 and TrkA are significantly co-overexpres...
Saved in:
Published in | Cancers Vol. 13; no. 10; p. 2340 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
12.05.2021
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | JAK2-STAT3 and TrkA signaling pathways have been separately implicated in aggressive breast cancers; however, whether they are co-activated or undergo functional interaction has not been thoroughly investigated. Herein we report, for the first time that STAT3 and TrkA are significantly co-overexpressed and co-activated in triple-negative breast cancer (TNBC) and HER2-enriched breast cancer, as shown by immunohistochemical staining and data mining. Through immunofluorescence staining-confocal microscopy and immunoprecipitation-Western blotting, we found that TrkA and STAT3 co-localize and physically interact in the cytoplasm, and the interaction is dependent on STAT3-Y705 phosphorylation. TrkA-STAT3 interaction leads to STAT3 phosphorylation at Y705 by TrkA in breast cancer cells and cell-free kinase assays, indicating that STAT3 is a novel substrate of TrkA. β-NGF-mediated TrkA activation induces TrkA-STAT3 interaction, STAT3 nuclear transport and transcriptional activity, and the expression of STAT3 target genes,
and
. The co-activation of both pathways promotes breast cancer stem cells. Finally, we found that TNBC and HER2-enriched breast cancer with JAK2-STAT3 and TrkA co-activation are positively associated with poor overall metastasis-free and organ-specific metastasis-free survival. Collectively, our study uncovered that TrkA is a novel activating kinase of STAT3, and their co-activation enhances gene transcription and promotes breast cancer stem cells in TNBC and HER2-enriched breast cancer. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 2072-6694 2072-6694 |
DOI: | 10.3390/cancers13102340 |