Glioma-astrocyte interaction modifies the astrocyte phenotype in a co-culture experimental model

As the majority of gliomas arise through malignant transformation of astrocytes, we aimed at investigating the interaction between malignant glioma cells and astrocytes in a co-culture experimental model. For this purpose we analyzed the expression of genes and proteins involved in tumor promotion a...

Full description

Saved in:
Bibliographic Details
Published inOncology reports Vol. 22; no. 6; pp. 1349 - 1356
Main Authors GAGLIANO, Nicoletta, COSTA, Francesco, COSSETTI, Chiara, PETTINARI, Letizia, BASSI, Rosaria, CHIRIV A-INTERNATI, Maurizio, COBOS, Everardo, GIOIA, Magda, PLUCHINO, Stefano
Format Journal Article
LanguageEnglish
Published Athens Spandidos 01.12.2009
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:As the majority of gliomas arise through malignant transformation of astrocytes, we aimed at investigating the interaction between malignant glioma cells and astrocytes in a co-culture experimental model. For this purpose we analyzed the expression of genes and proteins involved in tumor promotion and invasion, such as glial fibrillary acidic protein (GFAP), matrix metalloproteinase-2 (MMP-2), tissue inhibitor of MMP-2 (TIMP-2), transforming growth factor-beta1 (TGF-beta1), secreted protein acidic and rich in cysteine (SPARC), and connexin 43 (CX43). Co-cultures of human neural stem cell-derived astrocytes and U87 MG astrocytoma cells were performed in a transwell system. Gene expression was evaluated by real-time RT-PCR, and protein analysis was performed by Western blotting, SDS-zymography, and immunofluorescence. GFAP tended to be up-regulated in astrocytes co-cultivated with U87, suggesting a reactive response induced by glioma cells. CX43 mRNA tended to be down- regulated in co-cultured astrocytes, as well as the non-phosphorylated isoform at the protein level. MMP-2 mRNA tended to be up-regulated, and MMP-2 protein levels were significantly increased in astrocytes co-cultivated with U87. TIMP-2 and SPARC mRNA decreased in astrocytes co-cultivated with U87, showing lower expression in glioma cells. By contrast, SPARC protein expression was strongly induced in supernatants of co-cultured astrocytes. TGF-beta1 was not modified. Our results suggest that U87 cells elicit phenotype modifications in the neighbouring resident astrocytes very likely mediated by soluble factors. Glioma/astrocyte interaction could possibly trigger an astrocyte phenotype modification consistent with a malignant transformation, and favouring a more permissive environment for glioma cells invasion.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1021-335X
1791-2431
DOI:10.3892/or_00000574