Analysis and design of auto-adaptive leveling hydraulic suspension for agricultural robot

The application of agricultural robot in hilly and mountain areas faces several problems, such as bad walking performance, easy tilt, and low safety. The auto-adaptive leveling hydraulic suspension for the agricultural robot can help to eliminate some sort of problems. The design of such system is t...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of advanced robotic systems Vol. 18; no. 5
Main Authors Hu, Kai, Zhang, Wenyi, Qi, Bing
Format Journal Article
LanguageEnglish
Published London, England SAGE Publications 01.09.2021
Sage Publications Ltd
SAGE Publishing
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The application of agricultural robot in hilly and mountain areas faces several problems, such as bad walking performance, easy tilt, and low safety. The auto-adaptive leveling hydraulic suspension for the agricultural robot can help to eliminate some sort of problems. The design of such system is the main aim of the article. The hydraulic system with load-sensing system and its controlling model were established and then the load-sensing system was modeled and simulated in Advanced Modeling Environment for SIMulation. The optimal proportional–integral–derivative parameters were determined by the optimized algorithm. The simulation results illustrated that the inlet and outlet pressure difference of throttle and the flow rate through throttle are 42 bar and 29.65 L/min, respectively, all the time when the load pressure varies from 0 bar to 100 bar. The load-sensing system has good power follow-up and high control accuracy. And then the experimental bench of auto-adaptive leveling hydraulic suspension was researched and developed to verify the leveling performance. The experimental results demonstrate that auto-adaptive leveling hydraulic suspension can keep frame leveling dynamically on upslope, downslope, side slope, and continuous undulating road surface. The maximum errors of the pitch angle and the tilt angle are −0.93° and 0.97°. The feasibility of the designed hydraulic suspension was verified. The research methods in this article can provide theoretical basis for the design of other auto-adaptive leveling systems in hilly and mountain areas.
ISSN:1729-8806
1729-8814
DOI:10.1177/17298814211040634