Combining environmental exposure and genetic effect measurements in health outcome assessment

The presence of overwhelming difficulties in assessing the extent or even the presence of a causal association between modern environmental exposures and disease has promoted the use of more complex models in the design of human biomonitoring studies. The concatenation of environmental exposure, gen...

Full description

Saved in:
Bibliographic Details
Published inMutation research Vol. 428; no. 1-2; p. 177
Main Author Bonassi, S
Format Journal Article
LanguageEnglish
Published Netherlands 16.07.1999
Subjects
Online AccessGet more information

Cover

Loading…
More Information
Summary:The presence of overwhelming difficulties in assessing the extent or even the presence of a causal association between modern environmental exposures and disease has promoted the use of more complex models in the design of human biomonitoring studies. The concatenation of environmental exposure, genetic effect and individual susceptibility is a key issue in the assessment of risks for populations exposed to environmental pollutants. The use of a biological event laying in the causal pathway from exposure to outcome as surrogate end-point of disease, can potentially anticipate clinical diagnosis, offering a number of possibilities for application of preventive measures. Numerous biomarkers are currently employed to study human populations exposed to environmental carcinogens, among these, the frequency of chromosomal aberration (CA) in peripheral blood lymphocytes has the most abundant literature linking a genetic effect with the occurrence of cancer. Findings from recent epidemiological studies which have followed-up a large group of healthy subjects screened for CAs have lent further support to the use of chromosomal breakage as a relevant biomarker of cancer risk. The applicability of surrogate end-points of cancer on an individual basis thus far seems to be limited to few examples. On the other hand, from a public health outlook, increases in the frequency of surrogate end-points are suggestive of an increased risk of cancer, and for validated biomarkers such as CAs intervention policies and actions in exposed populations showing increased frequency of these end-points should be always recommended.
ISSN:0027-5107
DOI:10.1016/S1383-5742(99)00045-9