Conversion of Multichannel Sound Signal Maintaining Physical Properties of Sound in Reproduced Sound Field

In this paper, we describe a new method for converting the signal of the original multichannel sound system into that of an alternative system with a different number of channels while maintaining the physical properties of sound at the listening point in the reproduced sound field. Such a conversio...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on audio, speech, and language processing Vol. 19; no. 6; pp. 1467 - 1475
Main Author Ando, A
Format Journal Article
LanguageEnglish
Published Piscataway, NJ IEEE 01.08.2011
Institute of Electrical and Electronics Engineers
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In this paper, we describe a new method for converting the signal of the original multichannel sound system into that of an alternative system with a different number of channels while maintaining the physical properties of sound at the listening point in the reproduced sound field. Such a conversion problem can be described by the underdetermined linear equation. To obtain an analytical solution to the equation, the method partitions the sound field of the alternative system on the basis of the positions of three loudspeakers and solves the "local solution" in each subfield. As a result, the alternative system localizes each channel signal of the original sound system at the corresponding loudspeaker position as a phantom source. The composition of the local solutions introduces the "global solution," that is, the analytical solution to the conversion problem. 22-channel signals of a 22.2 multichannel sound system without the two low-frequency effect channels were converted into 10-, 8-, and 6-channel signals by the method. Subjective evaluations showed that the proposed method could reproduce the spatial impression of the original 22-channel sound with eight loudspeakers.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:1558-7916
1558-7924
DOI:10.1109/TASL.2010.2092429