A genetic model of methionine restriction extends Drosophila health- and lifespan

Loss of metabolic homeostasis is a hallmark of aging and is characterized by dramatic metabolic reprogramming. To analyze how the fate of labeled methionine is altered during aging, we applied C5-Methionine labeling to and demonstrated significant changes in the activity of different branches of the...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 118; no. 40; p. 1
Main Authors Parkhitko, Andrey A, Wang, Lin, Filine, Elizabeth, Jouandin, Patrick, Leshchiner, Dmitry, Binari, Richard, Asara, John M, Rabinowitz, Joshua D, Perrimon, Norbert
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 05.10.2021
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Loss of metabolic homeostasis is a hallmark of aging and is characterized by dramatic metabolic reprogramming. To analyze how the fate of labeled methionine is altered during aging, we applied C5-Methionine labeling to and demonstrated significant changes in the activity of different branches of the methionine metabolism as flies age. We further tested whether targeted degradation of methionine metabolism components would "reset" methionine metabolism flux and extend the fly lifespan. Specifically, we created transgenic flies with inducible expression of , a bacterial enzyme capable of degrading methionine and revealed methionine requirements for normal maintenance of lifespan. We also demonstrated that microbiota-derived methionine is an alternative and important source in addition to food-derived methionine. In this genetic model of methionine restriction (MetR), we also demonstrate that either whole-body or tissue-specific expression can dramatically extend health- and lifespan and exerts physiological effects associated with MetR. Interestingly, while previous dietary MetR extended lifespan in flies only in low amino acid conditions, MetR from expression extends lifespan independently of amino acid levels in the food. Finally, because impairment of the methionine metabolism has been previously associated with the development of Alzheimer's disease, we compared methionine metabolism reprogramming between aging flies and a model relevant to Alzheimer's disease, and found that overexpression of human Tau caused methionine metabolism flux reprogramming similar to the changes found in aged flies. Altogether, our study highlights Methioninase as a potential agent for health- and lifespan extension.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Author contributions: A.A.P., L.W., J.D.R., and N.P. designed research; A.A.P., L.W., E.F., P.J., D.L., R.B., and J.M.A. performed research; A.A.P., J.M.A., and J.D.R. contributed new reagents/analytic tools; A.A.P. and N.P. analyzed data; and A.A.P. and N.P. wrote the paper.
Reviewers: S.L.H., Brown University; D.W.W., University of California, Los Angeles.
Contributed by Norbert Perrimon, August 22, 2021 (sent for review June 14, 2021; reviewed by Stephen L. Helfand and David W. Walker)
ISSN:0027-8424
1091-6490
DOI:10.1073/pnas.2110387118