Peroxisome Proliferator-Activated Receptor-α Activation Promotes Macrophage Reverse Cholesterol Transport Through a Liver X Receptor–Dependent Pathway

OBJECTIVE—Peroxisome proliferator-activated receptor-α (PPARα) activation has been shown in vitro to increase macrophage cholesterol efflux, the initial step in reverse cholesterol transport (RCT). However, it remains unclear whether PPARα activation promotes macrophage RCT in vivo. METHODS AND RESU...

Full description

Saved in:
Bibliographic Details
Published inArteriosclerosis, thrombosis, and vascular biology Vol. 31; no. 6; pp. 1276 - 1282
Main Authors Nakaya, Kazuhiro, Tohyama, Junichiro, Naik, Snehal U, Tanigawa, Hiroyuki, MacPhee, Colin, Billheimer, Jeffrey T, Rader, Daniel J
Format Journal Article
LanguageEnglish
Published Philadelphia, PA American Heart Association, Inc 01.06.2011
Lippincott Williams & Wilkins
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:OBJECTIVE—Peroxisome proliferator-activated receptor-α (PPARα) activation has been shown in vitro to increase macrophage cholesterol efflux, the initial step in reverse cholesterol transport (RCT). However, it remains unclear whether PPARα activation promotes macrophage RCT in vivo. METHODS AND RESULTS—We demonstrated that a specific potent PPARα agonist GW7647 inhibited atherosclerosis and promoted macrophage RCT in hypercholesterolemic mice expressing the human apolipoprotein A-I (apoA-I) gene. We compared the effect of GW7647 on RCT in human apoA-I transgenic (hA-ITg) mice with wild-type mice and showed that the PPARα agonist promoted RCT in hA-ITg mice to a much greater extent than in wild-type mice, indicating that human apoA-I expression is important for PPARα-induced RCT. We further investigated the dependence of the macrophage PPARα–liver X receptor (LXR) pathway on the promotion of RCT by GW7647. Primary murine macrophages lacking PPARα or LXR abolished the ability of GW7647 to promote RCT in hA-ITg mice. In concert, the PPARα agonist promoted cholesterol efflux and ATP binding cassette transporter A1/G1 expression in primary macrophages, and this was also by the PPARα-LXR pathway. CONCLUSION—Our observations demonstrate that a potent PPARα agonist promotes macrophage RCT in vivo in a manner that is enhanced by human apoA-I expression and dependent on both macrophage PPARα and LXR expression.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1079-5642
1524-4636
DOI:10.1161/ATVBAHA.111.225383