Root angle in maize influences nitrogen capture and is regulated by calcineurin B‐like protein (CBL)‐interacting serine/threonine‐protein kinase 15 (ZmCIPK15)
Crops with reduced nutrient and water requirements are urgently needed in global agriculture. Root growth angle plays an important role in nutrient and water acquisition. A maize diversity panel of 481 genotypes was screened for variation in root angle employing a high‐throughput field phenotyping p...
Saved in:
Published in | Plant, cell and environment Vol. 45; no. 3; pp. 837 - 853 |
---|---|
Main Authors | , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Wiley Subscription Services, Inc
01.03.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Crops with reduced nutrient and water requirements are urgently needed in global agriculture. Root growth angle plays an important role in nutrient and water acquisition. A maize diversity panel of 481 genotypes was screened for variation in root angle employing a high‐throughput field phenotyping platform. Genome‐wide association mapping identified several single nucleotide polymorphisms (SNPs) associated with root angle, including one located in the root expressed CBL‐interacting serine/threonine‐protein kinase 15 (ZmCIPK15) gene (LOC100285495). Reverse genetic studies validated the functional importance of ZmCIPK15, causing a approximately 10° change in root angle in specific nodal positions. A steeper root growth angle improved nitrogen capture in silico and in the field. OpenSimRoot simulations predicted at 40 days of growth that this change in angle would improve nitrogen uptake by 11% and plant biomass by 4% in low nitrogen conditions. In field studies under suboptimal N availability, the cipk15 mutant with steeper growth angles had 18% greater shoot biomass and 29% greater shoot nitrogen accumulation compared to the wild type after 70 days of growth. We propose that a steeper root growth angle modulated by ZmCIPK15 will facilitate efforts to develop new crop varieties with optimal root architecture for improved performance under edaphic stress.
Genome‐wide association mapping identified CBL‐interacting serine/threonine‐protein kinase 15 (ZmCIPK15) gene that controls root angle and is associated with increased deep nitrogen capture and plant performance in low nitrogen environments. |
---|---|
AbstractList | Crops with reduced nutrient and water requirements are urgently needed in global agriculture. Root growth angle plays an important role in nutrient and water acquisition. A maize diversity panel of 481 genotypes was screened for variation in root angle employing a high-throughput field phenotyping platform. Genome-wide association mapping identified several single nucleotide polymorphisms (SNPs) associated with root angle, including one located in the root expressed CBL-interacting serine/threonine-protein kinase 15 (ZmCIPK15) gene (LOC100285495). Reverse genetic studies validated the functional importance of ZmCIPK15, causing a approximately 10° change in root angle in specific nodal positions. A steeper root growth angle improved nitrogen capture in silico and in the field. OpenSimRoot simulations predicted at 40 days of growth that this change in angle would improve nitrogen uptake by 11% and plant biomass by 4% in low nitrogen conditions. In field studies under suboptimal N availability, the cipk15 mutant with steeper growth angles had 18% greater shoot biomass and 29% greater shoot nitrogen accumulation compared to the wild type after 70 days of growth. We propose that a steeper root growth angle modulated by ZmCIPK15 will facilitate efforts to develop new crop varieties with optimal root architecture for improved performance under edaphic stress.Crops with reduced nutrient and water requirements are urgently needed in global agriculture. Root growth angle plays an important role in nutrient and water acquisition. A maize diversity panel of 481 genotypes was screened for variation in root angle employing a high-throughput field phenotyping platform. Genome-wide association mapping identified several single nucleotide polymorphisms (SNPs) associated with root angle, including one located in the root expressed CBL-interacting serine/threonine-protein kinase 15 (ZmCIPK15) gene (LOC100285495). Reverse genetic studies validated the functional importance of ZmCIPK15, causing a approximately 10° change in root angle in specific nodal positions. A steeper root growth angle improved nitrogen capture in silico and in the field. OpenSimRoot simulations predicted at 40 days of growth that this change in angle would improve nitrogen uptake by 11% and plant biomass by 4% in low nitrogen conditions. In field studies under suboptimal N availability, the cipk15 mutant with steeper growth angles had 18% greater shoot biomass and 29% greater shoot nitrogen accumulation compared to the wild type after 70 days of growth. We propose that a steeper root growth angle modulated by ZmCIPK15 will facilitate efforts to develop new crop varieties with optimal root architecture for improved performance under edaphic stress. Crops with reduced nutrient and water requirements are urgently needed in global agriculture. Root growth angle plays an important role in nutrient and water acquisition. A maize diversity panel of 481 genotypes was screened for variation in root angle employing a high‐throughput field phenotyping platform. Genome‐wide association mapping identified several single nucleotide polymorphisms (SNPs) associated with root angle, including one located in the root expressed CBL‐interacting serine/threonine‐protein kinase 15 (ZmCIPK15) gene (LOC100285495). Reverse genetic studies validated the functional importance of ZmCIPK15, causing a approximately 10° change in root angle in specific nodal positions. A steeper root growth angle improved nitrogen capture in silico and in the field. OpenSimRoot simulations predicted at 40 days of growth that this change in angle would improve nitrogen uptake by 11% and plant biomass by 4% in low nitrogen conditions. In field studies under suboptimal N availability, the cipk15 mutant with steeper growth angles had 18% greater shoot biomass and 29% greater shoot nitrogen accumulation compared to the wild type after 70 days of growth. We propose that a steeper root growth angle modulated by ZmCIPK15 will facilitate efforts to develop new crop varieties with optimal root architecture for improved performance under edaphic stress. Crops with reduced nutrient and water requirements are urgently needed in global agriculture. Root growth angle plays an important role in nutrient and water acquisition. A maize diversity panel of 481 genotypes was screened for variation in root angle employing a high‐throughput field phenotyping platform. Genome‐wide association mapping identified several single nucleotide polymorphisms (SNPs) associated with root angle, including one located in the root expressed CBL‐interacting serine/threonine‐protein kinase 15 ( ZmCIPK15 ) gene (LOC100285495). Reverse genetic studies validated the functional importance of ZmCIPK15, causing a approximately 10° change in root angle in specific nodal positions. A steeper root growth angle improved nitrogen capture in silico and in the field. OpenSimRoot simulations predicted at 40 days of growth that this change in angle would improve nitrogen uptake by 11% and plant biomass by 4% in low nitrogen conditions. In field studies under suboptimal N availability, the cipk15 mutant with steeper growth angles had 18% greater shoot biomass and 29% greater shoot nitrogen accumulation compared to the wild type after 70 days of growth. We propose that a steeper root growth angle modulated by ZmCIPK15 will facilitate efforts to develop new crop varieties with optimal root architecture for improved performance under edaphic stress. Genome‐wide association mapping identified CBL‐interacting serine/threonine‐protein kinase 15 ( ZmCIPK15 ) gene that controls root angle and is associated with increased deep nitrogen capture and plant performance in low nitrogen environments. Crops with reduced nutrient and water requirements are urgently needed in global agriculture. Root growth angle plays an important role in nutrient and water acquisition. A maize diversity panel of 481 genotypes was screened for variation in root angle employing a high‐throughput field phenotyping platform. Genome‐wide association mapping identified several single nucleotide polymorphisms (SNPs) associated with root angle, including one located in the root expressed CBL‐interacting serine/threonine‐protein kinase 15 (ZmCIPK15) gene (LOC100285495). Reverse genetic studies validated the functional importance of ZmCIPK15, causing a approximately 10° change in root angle in specific nodal positions. A steeper root growth angle improved nitrogen capture in silico and in the field. OpenSimRoot simulations predicted at 40 days of growth that this change in angle would improve nitrogen uptake by 11% and plant biomass by 4% in low nitrogen conditions. In field studies under suboptimal N availability, the cipk15 mutant with steeper growth angles had 18% greater shoot biomass and 29% greater shoot nitrogen accumulation compared to the wild type after 70 days of growth. We propose that a steeper root growth angle modulated by ZmCIPK15 will facilitate efforts to develop new crop varieties with optimal root architecture for improved performance under edaphic stress. Genome‐wide association mapping identified CBL‐interacting serine/threonine‐protein kinase 15 (ZmCIPK15) gene that controls root angle and is associated with increased deep nitrogen capture and plant performance in low nitrogen environments. |
Author | Kaeppler, Shawn M. Bucksch, Alexander Borkar, Aditi N. Hanlon, Meredith T. Lor, Vai Sa Nee Rodriguez, Jonas Zhang, Xia Schneider, Hannah M. Brown, Kathleen M. Perkins, Alden Bennett, Malcolm J. Lynch, Jonathan P. Bhosale, Rahul |
Author_xml | – sequence: 1 givenname: Hannah M. surname: Schneider fullname: Schneider, Hannah M. organization: The Pennsylvania State University – sequence: 2 givenname: Vai Sa Nee surname: Lor fullname: Lor, Vai Sa Nee organization: University of Wisconsin – sequence: 3 givenname: Meredith T. surname: Hanlon fullname: Hanlon, Meredith T. organization: The Pennsylvania State University – sequence: 4 givenname: Alden surname: Perkins fullname: Perkins, Alden organization: The Pennsylvania State University – sequence: 5 givenname: Shawn M. surname: Kaeppler fullname: Kaeppler, Shawn M. organization: University of Wisconsin – sequence: 6 givenname: Aditi N. surname: Borkar fullname: Borkar, Aditi N. organization: University of Nottingham – sequence: 7 givenname: Rahul surname: Bhosale fullname: Bhosale, Rahul organization: University of Nottingham – sequence: 8 givenname: Xia surname: Zhang fullname: Zhang, Xia organization: University of Wisconsin – sequence: 9 givenname: Jonas surname: Rodriguez fullname: Rodriguez, Jonas organization: University of Wisconsin – sequence: 10 givenname: Alexander surname: Bucksch fullname: Bucksch, Alexander organization: University of Georgia – sequence: 11 givenname: Malcolm J. surname: Bennett fullname: Bennett, Malcolm J. organization: University of Nottingham – sequence: 12 givenname: Kathleen M. surname: Brown fullname: Brown, Kathleen M. organization: The Pennsylvania State University – sequence: 13 givenname: Jonathan P. orcidid: 0000-0002-7265-9790 surname: Lynch fullname: Lynch, Jonathan P. email: jpl4@psu.edu organization: The Pennsylvania State University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34169548$$D View this record in MEDLINE/PubMed |
BookMark | eNqFks1u1DAUhS1URKeFBS-ALLGZWaRjx3YSL2lUoGIkKgQbNpHHvhncOs5gO0LDqo_Qh-DJeBJcpmVRCfDGV-d-98g_5wgd-NEDQs8pOaF5LbcaTiinTDxCM8oqUTDCyQGaEcpJUdeSHqKjGC8JyUItn6BDxmklBW9m6MeHcUxY-Y0DbD0elP1-W_RuAq8hYm9TGDfgsVbbNAXIqME24gCbyakEBq93uee09TCF7HD68_rG2SvA2zAmyMK8PV0tsmh9gqB0sn6DI2QUlulLgNHnKrfv8SvrVQRMBZ5_Htrzi3dULJ6ix71yEZ7d7cfo0-uzj-3bYvX-zXn7alVoXlJR9ETWRinCDGuMlFqDIY0ximkuhV4LtWa9VJQ1JdC6l5T0vekN70sKwATR7BjN9775MF8niKkbbNTgnPIwTrErq4rmlyUV-T8quBCSS15l9OUD9HKcgs8XyYaMlWXDCMvUiztqWg9gum2wgwq77v6rMrDYAzqMMQbo_yCUdLcx6HIMut8xyOzyAattUsmOPgVl3b8mvlkHu79bdxft2X7iFxdcxpk |
CitedBy_id | crossref_primary_10_1007_s00299_025_03457_2 crossref_primary_10_1093_jxb_erad421 crossref_primary_10_3390_plants12234015 crossref_primary_10_1073_pnas_2201350119 crossref_primary_10_3390_genes13112121 crossref_primary_10_12688_f1000research_140649_1 crossref_primary_10_1002_agj2_21528 crossref_primary_10_1111_nph_18717 crossref_primary_10_1007_s00122_024_04606_z crossref_primary_10_1111_tpj_15560 crossref_primary_10_1111_jipb_13603 crossref_primary_10_1093_plcell_koae041 crossref_primary_10_1111_pce_14915 crossref_primary_10_1111_pce_14567 crossref_primary_10_1016_j_jia_2023_04_022 crossref_primary_10_1016_j_tplants_2022_04_001 crossref_primary_10_1093_aobpla_plac050 crossref_primary_10_1038_s41477_022_01274_z crossref_primary_10_1111_nph_18733 crossref_primary_10_1016_j_jgg_2024_10_007 crossref_primary_10_1111_tpj_16627 crossref_primary_10_1016_j_plaphy_2023_02_023 crossref_primary_10_1093_gigascience_giac080 crossref_primary_10_3389_fpls_2022_1010165 crossref_primary_10_1007_s11032_024_01508_2 crossref_primary_10_1016_j_fcr_2023_109109 crossref_primary_10_1002_csc2_21149 crossref_primary_10_1111_ppl_14543 crossref_primary_10_1016_j_agwat_2025_109354 crossref_primary_10_1016_j_plaphy_2024_108386 crossref_primary_10_3389_fpls_2022_827369 crossref_primary_10_3390_ijms25126791 crossref_primary_10_1093_plphys_kiae134 crossref_primary_10_1016_j_tplants_2024_01_008 crossref_primary_10_3390_resources13090120 crossref_primary_10_1073_pnas_2219668120 crossref_primary_10_1042_BCJ20220245 crossref_primary_10_3389_fpls_2023_1260005 crossref_primary_10_3390_cells11213471 crossref_primary_10_3390_ijms241310492 crossref_primary_10_3390_genes13020181 crossref_primary_10_1111_pce_14269 crossref_primary_10_1016_j_jia_2022_07_003 crossref_primary_10_1111_ppl_13787 crossref_primary_10_3390_plants12020412 crossref_primary_10_3390_stresses3030041 crossref_primary_10_1002_imt2_70015 crossref_primary_10_1016_j_jgg_2024_05_001 crossref_primary_10_3389_fpls_2021_808001 crossref_primary_10_1002_tpg2_20395 crossref_primary_10_1007_s11104_023_06301_2 |
Cites_doi | 10.1016/j.fcr.2010.10.003 10.4238/gmr16039864 10.1038/ng.546 10.1186/s13007-015-0093-3 10.1002/tpg2.20003 10.1093/jxb/eru508 10.1038/nature22971 10.1093/aob/mcw112 10.2135/cropsci2008.03.0152 10.1111/j.1365-313X.2008.03685.x 10.1104/pp.111.175414 10.1016/j.tplants.2008.10.005 10.1007/s11104-015-2379-7 10.1093/jxb/erz293 10.1093/bioinformatics/btz308 10.1186/1471-2164-8-116 10.3389/fpls.2013.00355 10.1371/journal.pgen.1005767 10.1093/aob/mcy092 10.1007/978-1-4612-2694-9_4 10.1023/A:1010381919003 10.3389/fpls.2013.00186 10.1007/BF02983986 10.1016/j.fcr.2011.01.001 10.1016/j.cell.2009.07.004 10.1016/j.fcr.2012.09.010 10.1016/0098-8472(93)90062-K 10.1016/j.jcg.2011.01.005 10.1016/S1360-1385(01)01946-X 10.1093/jxb/ers111 10.1071/FP06055 10.1111/nph.14641 10.1016/j.gpb.2020.10.007 10.1016/j.fcr.2004.07.003 10.1104/pp.109.1.7 10.1139/b86-335 10.1093/jxb/erm097 10.1093/aob/mch056 10.1093/jxb/erv241 10.1111/j.1469-8137.1996.tb01847.x 10.1023/A:1013324727040 10.1104/pp.114.243519 10.1071/FP05005 10.2135/cropsci2010.03.0178 10.1002/wsbm.87 10.2135/cropsci2016.08.0704 10.1073/pnas.88.8.3502 10.1093/jxb/ery048 10.1186/s12870-019-1653-x 10.1007/s00122-011-1690-9 10.1016/S1360-1385(01)02023-4 10.1093/bioinformatics/btm308 10.1007/s11104-007-9492-1 10.1111/j.1365-313X.2005.02509.x 10.1038/srep05563 10.1051/agro:19980305 10.1093/jxb/erq429 10.1007/s11104-010-0343-0 10.1016/j.plantsci.2018.09.015 10.1023/A:1026146615248 10.1016/j.fcr.2011.03.001 10.1093/jxb/erv074 10.1038/s41467-018-05636-0 10.1016/j.ceca.2014.05.003 10.3117/plantroot.1.57 10.1007/BF00008076 10.1071/FP03255 10.1093/genetics/154.1.437 10.1104/pp.104.059196 10.1104/pp.15.00145 10.1105/tpc.109.068395 10.1093/jxb/erp265 10.1626/pps.8.553 10.1093/jxb/eraa084 10.1007/s11104-008-9780-4 10.1626/jcs.60.543 10.1007/s11104-006-9008-4 10.1105/tpc.16.00806 10.1016/j.tplants.2007.08.012 10.1098/rstb.2011.0243 10.1111/nph.15738 10.1007/s10681-008-9833-z 10.1093/jxb/eri303 10.1093/jxb/erw115 10.1007/s11104-010-0623-8 10.1360/04wc0142 10.1093/aob/mcr175 10.1093/aob/mcs293 10.1038/ng.2725 |
ContentType | Journal Article |
Copyright | 2021 The Authors. published by John Wiley & Sons Ltd. 2021 The Authors. Plant, Cell & Environment published by John Wiley & Sons Ltd. 2021. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2021 The Authors. published by John Wiley & Sons Ltd. – notice: 2021 The Authors. Plant, Cell & Environment published by John Wiley & Sons Ltd. – notice: 2021. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QP 7ST C1K SOI 7X8 7S9 L.6 |
DOI | 10.1111/pce.14135 |
DatabaseName | Wiley Online Library Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Calcium & Calcified Tissue Abstracts Environment Abstracts Environmental Sciences and Pollution Management Environment Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Calcium & Calcified Tissue Abstracts Environment Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic Calcium & Calcified Tissue Abstracts CrossRef AGRICOLA MEDLINE |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology Botany |
EISSN | 1365-3040 |
EndPage | 853 |
ExternalDocumentID | 34169548 10_1111_pce_14135 PCE14135 |
Genre | article Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: US Department of Energy ARPA‐e ROOTS funderid: DE‐AR0000821 – fundername: USDA National Institute of Food and Agriculture Federal Appropriations funderid: PEN04732 – fundername: BBSRC Discovery and Future Food Beacon Nottingham Research Fellowship – fundername: Anne McLaren Fellowship – fundername: Howard G Buffett Foundation |
GroupedDBID | --- .3N .GA .Y3 05W 0R~ 10A 123 186 1OB 1OC 24P 29O 2WC 31~ 33P 36B 3SF 4.4 42X 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHBH AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFS ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHEFC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BAWUL BDRZF BFHJK BHBCM BIYOS BMNLL BNHUX BROTX BRXPI BY8 CAG COF CS3 D-E D-F DC6 DCZOG DIK DPXWK DR2 DRFUL DRSTM DU5 EBS ECGQY EJD ESX F00 F01 F04 F5P FEDTE FIJ FZ0 G-S G.N GODZA H.T H.X HF~ HGLYW HVGLF HZI HZ~ IHE IPNFZ IX1 J0M K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG OK1 P2P P2W P2X P4D PALCI Q.N Q11 QB0 R.K RIWAO RJQFR ROL RX1 SAMSI SUPJJ UB1 W8V W99 WBKPD WH7 WHG WIH WIK WIN WNSPC WOHZO WQJ WRC WXSBR WYISQ XG1 XSW YNT ZZTAW ~02 ~IA ~KM ~WT AAYXX AETEA AEYWJ AGHNM AGQPQ AGYGG CITATION AAMMB AEFGJ AGXDD AIDQK AIDYY CGR CUY CVF ECM EIF NPM 7QP 7ST C1K SOI 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c4215-f097daa03d38d99cced08dda3c495cb5ab3f9a1382e17f910ffdfd4f21ee350c3 |
IEDL.DBID | DR2 |
ISSN | 0140-7791 1365-3040 |
IngestDate | Fri Jul 11 18:33:24 EDT 2025 Fri Jul 11 16:39:29 EDT 2025 Sun Jul 20 09:11:00 EDT 2025 Mon Jul 21 05:59:04 EDT 2025 Tue Jul 01 04:28:45 EDT 2025 Thu Apr 24 22:57:00 EDT 2025 Wed Jan 22 16:27:34 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | root architecture GWAS phenotyping crown root |
Language | English |
License | Attribution-NonCommercial-NoDerivs 2021 The Authors. Plant, Cell & Environment published by John Wiley & Sons Ltd. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4215-f097daa03d38d99cced08dda3c495cb5ab3f9a1382e17f910ffdfd4f21ee350c3 |
Notes | Funding information Anne McLaren Fellowship; BBSRC Discovery and Future Food Beacon Nottingham Research Fellowship; Howard G Buffett Foundation; US Department of Energy ARPA‐e ROOTS, Grant/Award Number: DE‐AR0000821; USDA National Institute of Food and Agriculture Federal Appropriations, Grant/Award Number: PEN04732 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-7265-9790 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fpce.14135 |
PMID | 34169548 |
PQID | 2633228303 |
PQPubID | 37957 |
PageCount | 17 |
ParticipantIDs | proquest_miscellaneous_2661040060 proquest_miscellaneous_2545594946 proquest_journals_2633228303 pubmed_primary_34169548 crossref_primary_10_1111_pce_14135 crossref_citationtrail_10_1111_pce_14135 wiley_primary_10_1111_pce_14135_PCE14135 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | March 2022 2022-03-00 20220301 |
PublicationDateYYYYMMDD | 2022-03-01 |
PublicationDate_xml | – month: 03 year: 2022 text: March 2022 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Oxford |
PublicationTitle | Plant, cell and environment |
PublicationTitleAlternate | Plant Cell Environ |
PublicationYear | 2022 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2018; 122 2013; 4 2012; 124 2015; 388 2006; 33 2005; 138 2011; 62 1991; 60 2019; 19 2008; 303 2012; 367 2019; 282 2009; 49 2011; 156 2014; 134 1925; 16 2018; 9 1998; 18 2009; 14 2009; 57 2004; 31 2014; 4 1991; 88 2016; 118 1993; 33 2013; 112 2007; 8 2009; 166 2008; 316 2020b; 71 2005; 32 1996; 132 2014; 166 2007; 1 2010; 2 2007; 23 2014; 56 2011; 122 2006; 287 2011; 121 2012; 63 2011; 120 2019; 70 2009; 21 2004; 49 2009; 60 2013; 45 2019; 35 2015; 167 2015; 11 2019; 223 1995 1994 2000; 154 2017; 29 2013; 140 2002 2004; 90 2011; 38 2015; 9 2019; 182 2007; 12 2003; 255 2005; 44 2007; 58 2017; 215 2009; 138 2016; 12 2018; 69 2001; 232 1994; 165 2018; 17 2010; 42 2020a; 13 2011; 108 2012; 3 2004; 93 2001; 6 1986; 64 2021 2005; 8 2017; 57 2011; 51 2015; 66 1995; 109 2010; 333 2018 2005; 56 2017; 546 2016; 67 2011; 341 2001; 237 e_1_2_8_26_1 Kolukisaoglu U. (e_1_2_8_42_1) 2014; 134 e_1_2_8_49_1 e_1_2_8_68_1 e_1_2_8_5_1 e_1_2_8_9_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_64_1 e_1_2_8_87_1 Peñagaricano F. (e_1_2_8_71_1) 2012; 3 e_1_2_8_41_1 e_1_2_8_60_1 e_1_2_8_83_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_57_1 e_1_2_8_91_1 e_1_2_8_95_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_76_1 e_1_2_8_30_1 e_1_2_8_72_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_48_1 Zheng Z. (e_1_2_8_97_1) 2019; 182 e_1_2_8_2_1 e_1_2_8_6_1 e_1_2_8_21_1 e_1_2_8_67_1 e_1_2_8_44_1 e_1_2_8_86_1 e_1_2_8_63_1 e_1_2_8_40_1 e_1_2_8_82_1 e_1_2_8_18_1 e_1_2_8_14_1 e_1_2_8_37_1 e_1_2_8_79_1 e_1_2_8_94_1 e_1_2_8_90_1 e_1_2_8_98_1 Stelpflug S. C. (e_1_2_8_81_1) 2015; 9 e_1_2_8_10_1 e_1_2_8_56_1 e_1_2_8_33_1 e_1_2_8_75_1 e_1_2_8_52_1 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_3_1 e_1_2_8_7_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_66_1 e_1_2_8_89_1 e_1_2_8_62_1 e_1_2_8_85_1 e_1_2_8_17_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_59_1 e_1_2_8_70_1 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_78_1 e_1_2_8_51_1 e_1_2_8_74_1 e_1_2_8_93_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_69_1 e_1_2_8_80_1 e_1_2_8_4_1 e_1_2_8_8_1 e_1_2_8_88_1 e_1_2_8_23_1 e_1_2_8_65_1 e_1_2_8_84_1 e_1_2_8_61_1 e_1_2_8_39_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_58_1 e_1_2_8_92_1 e_1_2_8_96_1 Giri J. (e_1_2_8_19_1) 2018; 9 e_1_2_8_31_1 e_1_2_8_77_1 e_1_2_8_12_1 e_1_2_8_54_1 R Core Team (e_1_2_8_73_1) 2018 e_1_2_8_50_1 |
References_xml | – volume: 56 start-page: 81 year: 2014 end-page: 95 article-title: Comprehensive structural, interaction and expression analysis of CBL and CIPK complement during abiotic stresses and development in rice publication-title: Cell Calcium – volume: 132 start-page: 281 year: 1996 end-page: 288 article-title: Effect of phosphorus deficiency on growth angle of basal roots in publication-title: New Phytologist – volume: 57 start-page: 264 year: 2009 end-page: 278 article-title: AtCIPK8, a CBL‐interacting protein kinase, regulates the low‐affinity phase of the primary nitrate response publication-title: Plant Journal – volume: 88 start-page: 3502 year: 1991 end-page: 3506 article-title: Inactivation of maize transposon mu suppresses a mutant phenotype by activating an outward‐reading promoter near the end of Mu1 publication-title: Proceedings of the National Academy of Sciences – volume: 51 start-page: 704 year: 2011 end-page: 715 article-title: Genetic diversity of a maize association population with restricted phenology publication-title: Crop Science – volume: 138 start-page: 55 year: 2005 end-page: 58 article-title: The maize genetics and genomics database. The community resource for access to diverse maize data publication-title: Plant Physiology – volume: 333 start-page: 287 year: 2010 end-page: 299 article-title: Morphological and architectural development of root systems in sorghum and maize publication-title: Plant and Soil – volume: 70 start-page: 5311 year: 2019 end-page: 5325 article-title: Genotypic variation and nitrogen stress effects on root anatomy in maize are node specific publication-title: Journal of Experimental Botany – volume: 60 start-page: 3989 year: 2009 end-page: 4002 article-title: Is it good noise? The role of developmental instability in the shaping of a root system publication-title: Journal of Experimental Botany – volume: 134 start-page: 43 year: 2014 end-page: 58 article-title: Calcium sensors and their interacting protein kinases: Genomics of the arabidopsis and rice CBL‐CIPK signaling networks publication-title: Genome Analysis – volume: 341 start-page: 75 year: 2011 end-page: 87 article-title: Shovelomics: High throughput phenotyping of maize ( L.) root architecture in the field publication-title: Plant and Soil – volume: 3 start-page: 307 year: 2012 article-title: Inferring quantitative trait pathways associated with bull fertility from a genome‐wide association study publication-title: Frontiers in Genetics – volume: 12 year: 2016 article-title: Iterative usage of fixed and random effect models for powerful and efficient genome‐wide association studies publication-title: PLoS Genetics – volume: 64 start-page: 2524 year: 1986 end-page: 2537 article-title: The nodal roots of : Their development in relation to structural features of the stem publication-title: Canadian Journal of Botany – volume: 215 start-page: 1274 year: 2017 end-page: 1286 article-title: OpenSimRoot: Widening the scope and application of root architectural models publication-title: New Phytologist – volume: 118 start-page: 401 year: 2016 end-page: 414 article-title: Impact of axial root growth angles on nitrogen acquisition in maize depends on environmental conditions publication-title: Annals of Botany – volume: 367 start-page: 1598 year: 2012 end-page: 1604 article-title: New roots for agriculture: Exploiting the root phenome publication-title: Philosophical Transactions of the Royal Society Series B – volume: 60 start-page: 543 year: 1991 end-page: 549 article-title: Elongation angle of nodal roots and its possible relation to spatial root distribution in maize and foxtail millet publication-title: Japanese Journal of Crop Science – volume: 167 start-page: 1430 year: 2015 end-page: 1439 article-title: Phene synergism between root hair length and basal root growth angle for phosphorus acquisition publication-title: Plant Physiology – volume: 49 start-page: 299 year: 2009 article-title: Can changes in canopy and/or root system architecture explain historical maize yield trends in the U.S. corn belt publication-title: Crop Science – volume: 124 start-page: 97 year: 2012 end-page: 109 article-title: QTL for nodal root angle in sorghum ( L. Moench) co‐locate with QTL for traits associated with drought adaptation publication-title: Theoretical and Applied Genetics – volume: 33 start-page: 141 year: 1993 end-page: 158 article-title: The gravitropic response of roots and the shaping of the root system in cereal plants publication-title: Environmental and Experimental Botany – volume: 63 start-page: 3485 year: 2012 end-page: 3498 article-title: Traits and selection strategies to improve root systems and water uptake in water‐limited wheat crops publication-title: Journal of Experimental Botany – volume: 287 start-page: 117 year: 2006 end-page: 129 article-title: Genotypic variation in root growth angle in rice ( L.) and its association with deep root development in upland fields with different water regimes publication-title: Plant and Soil – volume: 303 start-page: 115 year: 2008 end-page: 129 article-title: Genotypic variation in seedling root architectural traits and implications for drought adaptation in wheat ( L.) publication-title: Plant and Soil – volume: 546 start-page: 524 year: 2017 end-page: 527 article-title: Improved maize reference genome with single‐molecule technologies publication-title: Nature – volume: 1 start-page: 57 year: 2007 end-page: 65 article-title: QTL mapping of root angle in F2 populations from maize B73 x teosinte publication-title: Plant Root – volume: 33 start-page: 823 year: 2006 end-page: 837 article-title: The role of root architectural traits in adaptation of wheat to water‐limited environments publication-title: Functional Plant Biology – volume: 58 start-page: 2369 year: 2007 end-page: 2387 article-title: The challenge of improving nitrogen use efficiency in crop plants: Towards a more central role for genetic variability and quantitative genetics within integrated approaches publication-title: Journal of Experimental Botany – volume: 69 start-page: 3279 year: 2018 end-page: 3292 article-title: Rightsizing root phenotypes for drought resistance publication-title: Journal of Experimental Botany – volume: 388 start-page: 1 year: 2015 end-page: 20 article-title: Next generation shovelomics: Set up a tent and REST publication-title: Plant and Soil – volume: 62 start-page: 2485 year: 2011 end-page: 2494 article-title: , a major QTL involved in deep rooting of rice under upland field conditions publication-title: Journal of Experimental Botany – volume: 165 start-page: 323 year: 1994 end-page: 326 article-title: Gravitropic response growth angle and vertical distribution of roots of wheat ( L.) publication-title: Plant and Soil – volume: 12 start-page: 474 year: 2007 end-page: 481 article-title: Root system architecture: Opportunities and constraints for genetic improvement of crops publication-title: Trends in Plant Science – volume: 154 start-page: 437 year: 2000 end-page: 446 article-title: Mutator‐suppressible alleles of rough sheath1 and liguleless2 in maize reveal multiple mechanisms for suppression publication-title: Genetics – year: 2002 – volume: 237 start-page: 225 year: 2001 end-page: 237 article-title: Topsoil foraging—An architectural adaptation of plants to low phosphorus availability publication-title: Plant and Soil – year: 1995 – volume: 14 start-page: 37 year: 2009 end-page: 42 article-title: The CBL‐CIPK network in plant calcium signaling publication-title: Trends in Plant Science – volume: 19 start-page: 1 year: 2019 end-page: 17 article-title: Genome‐wide association analysis of stalk biomass and anatomical traits in maize publication-title: BMC Plant Biology – volume: 9 start-page: 314 year: 2015 end-page: 362 article-title: An expanded maize gene expression atlas based on RNA‐sequencing and its use to explore root development publication-title: The Plant Genome – volume: 66 start-page: 2199 year: 2015 end-page: 2210 article-title: Opportunities and challenges in the subsoil: Pathways to deeper rooted crops publication-title: Journal of Experimental Botany – volume: 9 start-page: 1 issue: 1 year: 2018 end-page: 9 article-title: Rice Actin binding protein RMD controls crown root angle in response to external phosphate publication-title: Nature Communications – volume: 9 start-page: 1 year: 2018 end-page: 7 article-title: Rice auxin influx carrier OsAUX1 facilitates root hair elongation in response to low external phosphate publication-title: Nature Communications – volume: 90 start-page: 19 year: 2004 end-page: 34 article-title: Improving drought tolerance in maize: A view from industry publication-title: Field Crops Research – volume: 35 start-page: 4419 year: 2019 end-page: 4421 article-title: Gpart: Human genome partitioning and visualization of high‐density SNP data by identifying haplotype blocks publication-title: Bioinformatics – volume: 56 start-page: 3061 year: 2005 end-page: 3070 article-title: , a major constitutive QTL, affects maize root architecture and leaf ABA concentration at different water regimes publication-title: Journal of Experimental Botany – volume: 71 start-page: 3185 year: 2020b end-page: 3197 article-title: Genetic control of root architectural plasticity in maize publication-title: Journal of Experimental Botany – volume: 49 start-page: 1611 year: 2004 end-page: 1620 – volume: 16 start-page: 33 year: 1925 end-page: 42 article-title: “Somatic segregation” in domestic fowl publication-title: Journal of Genetics – volume: 29 start-page: 409 year: 2017 end-page: 422 article-title: The kinase CIPK23 inhibits ammonium transport in publication-title: Plant Cell – volume: 66 start-page: 2347 year: 2015 end-page: 2358 article-title: Evolution of US maize ( L.) root architectural and anatomical phenes over the past 100 years corresponds to increased tolerance of nitrogen stress publication-title: Journal of Experimental Botany – volume: 93 start-page: 359 year: 2004 end-page: 368 article-title: Genetic dissection of root formation in maize ( ) reveals root‐type specific developmental programmes publication-title: Annals of Botany – volume: 255 start-page: 35 year: 2003 end-page: 54 article-title: Searching for quantitative trait loci controlling root traits in maize: A critical appraisal publication-title: Plant and Soil – volume: 45 start-page: 1097 year: 2013 end-page: 1102 article-title: Control of root system architecture by increases rice yield under drought conditions publication-title: Nature Genetics – start-page: 29 year: 1994 end-page: 37 – year: 2018 – volume: 31 start-page: 959 year: 2004 end-page: 970 article-title: Genetic mapping of basal root gravitropism and phosphorus acquisition efficiency in common bean publication-title: Functional Plant Biology – volume: 6 start-page: 395 year: 2001 end-page: 397 article-title: Dissecting calcium oscillators in plant cells publication-title: Trends in Plant Science – volume: 112 start-page: 347 year: 2013 end-page: 357 article-title: Steep, cheap and deep: An ideotype to optimize water and N acquisition by maize root systems publication-title: Annals of Botany – volume: 121 start-page: 350 year: 2011 end-page: 362 article-title: Genotypic variation for root traits of maize ( L.) from the Purhepecha plateau under contrasting phosphorus availability publication-title: Field Crops Research – volume: 18 start-page: 225 year: 1998 end-page: 235 article-title: Genetic analysis of root traits in maize publication-title: Agronomie – volume: 66 start-page: 5493 year: 2015 end-page: 5505 article-title: Intensive field phenotyping of maize ( L.) root crowns identifies phenes and phene integration associated with plant growth and nitrogen acquisition publication-title: Journal of Experimental Botany – volume: 11 start-page: 1 year: 2015 end-page: 12 article-title: DIRT: A high‐throughput computing and collaboration platform for field‐based plant phenomics publication-title: Plant Methods – volume: 4 start-page: 1 year: 2014 end-page: 6 article-title: Deep rooting conferred by DEEPER ROOTING 1 enhances rice yield in paddy fields publication-title: Scientific Reports – volume: 109 start-page: 7 year: 1995 end-page: 13 article-title: Root architecture and plant productivity publication-title: Plant Physiology – volume: 67 start-page: 3699 year: 2016 end-page: 3708 article-title: Root hair formation in rice ( L.) differs between root types and is altered in artificial growth conditions publication-title: Journal of Experimental Botany – volume: 4 start-page: 186 year: 2013 article-title: Getting to the roots of it: Genetic and hormonal control of root architecture publication-title: Frontiers in Plant Science – volume: 4 start-page: 355 year: 2013 article-title: Integration of root phenes for soil resource acquisition publication-title: Frontiers in Plant Science – year: 2021 article-title: rMVP: A memory‐efficient , visualization‐enhanced, and parallel‐accelerated tool for genome‐wide association study publication-title: Genomics, Proteomics & Bioinformatics – volume: 42 start-page: 355 year: 2010 end-page: 360 article-title: Mixed linear model approach adapted for genome‐wide association studies publication-title: Nature Genetics – volume: 166 start-page: 229 year: 2009 end-page: 237 article-title: Mapping of quantitative trait loci for seminal root morphology and gravitropic response in rice publication-title: Euphytica – volume: 13 year: 2020a article-title: Genetic control of root anatomical plasticity in maize publication-title: The Plant Genome – volume: 2 start-page: 683 year: 2010 end-page: 693 article-title: Gene networks for nitrogen sensing, signaling, and response in . publication-title: Systems Biology and Medicine – volume: 223 start-page: 548 year: 2019 end-page: 564 article-title: Root phenotypes for improved nutrient capture: An underexploited opportunity for global agriculture publication-title: New Phytologist – volume: 6 start-page: 262 year: 2001 end-page: 267 article-title: Abiotic stress signalling pathways: Specificity and cross‐talk publication-title: Trends in Plant Science – volume: 122 start-page: 1 year: 2011 end-page: 13 article-title: Root biology and genetic improvement for drought avoidance in rice publication-title: Field Crops Research – volume: 8 start-page: 553 year: 2005 end-page: 562 article-title: Development and distribution of root systems in two grain sorghum cultivars originated from Sudan under drought stress publication-title: Plant Production Science – volume: 140 start-page: 18 year: 2013 end-page: 31 article-title: Maize root growth angles become steeper under low N conditions publication-title: Field Crops Research – volume: 21 start-page: 2341 year: 2009 end-page: 2356 article-title: Ca2+ regulates reactive oxygen species production and pH during mechanosensing in arabidopsis roots publication-title: Plant Cell – volume: 120 start-page: 205 year: 2011 end-page: 214 article-title: Variation in root system architecture and drought response in rice ( ): Phenotyping of the OryzaSNP panel in rainfed lowland fields publication-title: Field Crops Research – volume: 108 start-page: 407 year: 2011 end-page: 418 article-title: Breeding crop plants with deep roots: Their role in sustainable carbon, nutrient and water sequestration publication-title: Annals of Botany – volume: 282 start-page: 11 year: 2019 end-page: 13 article-title: Demystifying roots: A need for clarification and extended concepts in root phenotyping publication-title: Plant Science – volume: 17 start-page: 1 year: 2018 article-title: Ectopic expression of AtCIPK23 enhances drought tolerance via accumulating less H O in transgenic tobacco plants publication-title: Genetics and Molecular Research – volume: 57 start-page: 1431 year: 2017 end-page: 1446 article-title: Grain yield and nitrogen accumulation in maize hybrids released during 1934 to 2013 in the US Midwest publication-title: Crop Science – volume: 166 start-page: 470 year: 2014 end-page: 486 article-title: Image‐based high‐throughput field phenotyping of crop roots publication-title: Plant Physiology – volume: 23 start-page: 2633 year: 2007 end-page: 2635 article-title: TASSEL: Software for association mapping of complex traits in diverse samples publication-title: Bioinformatics – volume: 156 start-page: 1041 year: 2011 end-page: 1049 article-title: Root phenes for enhanced soil exploration and phosphorus acquisition: Tools for future crops publication-title: Plant Physiology – volume: 232 start-page: 69 year: 2001 end-page: 79 article-title: Effect of phosphorus availability on basal root shallowness in common bean publication-title: Plant and Soil – volume: 8 start-page: 116 year: 2007 article-title: Sequence‐indexed mutations in maize using the UniformMu transposon‐tagging population publication-title: BMC Genomics – volume: 316 start-page: 285 year: 2008 end-page: 297 article-title: Measuring root traits in barley ( ssp. and ssp. ) seedlings using gel chambers, soil sacs and X‐ray microtomography publication-title: Plant and Soil – volume: 44 start-page: 52 year: 2005 end-page: 61 article-title: Steady‐state transposon mutagenesis in inbred maize publication-title: The Plant Journal – volume: 122 start-page: 485 year: 2018 end-page: 499 article-title: Co‐optimisation of axial root phenotypes for nitrogen and phosphorus acquisition in common bean publication-title: Annals Botany – volume: 32 start-page: 749 year: 2005 end-page: 762 article-title: Topsoil foraging and phosphorus acquisition efficiency in maize ( ) publication-title: Functional Plant Biology – volume: 182 year: 2019 article-title: Shared genetic control of root system architecture between and publication-title: Plant Physiology – volume: 138 start-page: 1184 year: 2009 end-page: 1194 article-title: CHL1 functions as a nitrate sensor in plants publication-title: Cell – volume: 38 start-page: 77 year: 2011 end-page: 87 article-title: Identification and characterization of putative CIPK genes in maize publication-title: Journal of Genetics and Genomics – ident: e_1_2_8_27_1 doi: 10.1016/j.fcr.2010.10.003 – ident: e_1_2_8_48_1 doi: 10.4238/gmr16039864 – ident: e_1_2_8_96_1 doi: 10.1038/ng.546 – ident: e_1_2_8_12_1 doi: 10.1186/s13007-015-0093-3 – ident: e_1_2_8_75_1 doi: 10.1002/tpg2.20003 – ident: e_1_2_8_57_1 doi: 10.1093/jxb/eru508 – volume-title: R: A language and environment for statistical computing year: 2018 ident: e_1_2_8_73_1 – volume: 9 start-page: 314 year: 2015 ident: e_1_2_8_81_1 article-title: An expanded maize gene expression atlas based on RNA‐sequencing and its use to explore root development publication-title: The Plant Genome – ident: e_1_2_8_34_1 doi: 10.1038/nature22971 – ident: e_1_2_8_13_1 doi: 10.1093/aob/mcw112 – ident: e_1_2_8_23_1 doi: 10.2135/cropsci2008.03.0152 – ident: e_1_2_8_32_1 doi: 10.1111/j.1365-313X.2008.03685.x – ident: e_1_2_8_56_1 doi: 10.1104/pp.111.175414 – ident: e_1_2_8_49_1 doi: 10.1016/j.tplants.2008.10.005 – ident: e_1_2_8_11_1 doi: 10.1007/s11104-015-2379-7 – ident: e_1_2_8_91_1 doi: 10.1093/jxb/erz293 – ident: e_1_2_8_40_1 doi: 10.1093/bioinformatics/btz308 – ident: e_1_2_8_78_1 doi: 10.1186/1471-2164-8-116 – ident: e_1_2_8_95_1 doi: 10.3389/fpls.2013.00355 – ident: e_1_2_8_46_1 doi: 10.1371/journal.pgen.1005767 – ident: e_1_2_8_74_1 doi: 10.1093/aob/mcy092 – ident: e_1_2_8_16_1 doi: 10.1007/978-1-4612-2694-9_4 – ident: e_1_2_8_44_1 doi: 10.1023/A:1010381919003 – ident: e_1_2_8_36_1 doi: 10.3389/fpls.2013.00186 – volume: 9 start-page: 1 year: 2018 ident: e_1_2_8_19_1 article-title: Rice auxin influx carrier OsAUX1 facilitates root hair elongation in response to low external phosphate publication-title: Nature Communications – ident: e_1_2_8_77_1 doi: 10.1007/BF02983986 – ident: e_1_2_8_5_1 doi: 10.1016/j.fcr.2011.01.001 – ident: e_1_2_8_29_1 doi: 10.1016/j.cell.2009.07.004 – volume: 134 start-page: 43 year: 2014 ident: e_1_2_8_42_1 article-title: Calcium sensors and their interacting protein kinases: Genomics of the arabidopsis and rice CBL‐CIPK signaling networks publication-title: Genome Analysis – ident: e_1_2_8_84_1 doi: 10.1016/j.fcr.2012.09.010 – ident: e_1_2_8_70_1 doi: 10.1016/0098-8472(93)90062-K – ident: e_1_2_8_10_1 doi: 10.1016/j.jcg.2011.01.005 – ident: e_1_2_8_41_1 doi: 10.1016/S1360-1385(01)01946-X – ident: e_1_2_8_89_1 doi: 10.1093/jxb/ers111 – ident: e_1_2_8_59_1 doi: 10.1071/FP06055 – ident: e_1_2_8_72_1 doi: 10.1111/nph.14641 – ident: e_1_2_8_92_1 doi: 10.1016/j.gpb.2020.10.007 – ident: e_1_2_8_9_1 doi: 10.1016/j.fcr.2004.07.003 – ident: e_1_2_8_52_1 doi: 10.1104/pp.109.1.7 – ident: e_1_2_8_79_1 – ident: e_1_2_8_31_1 doi: 10.1139/b86-335 – ident: e_1_2_8_28_1 doi: 10.1093/jxb/erm097 – ident: e_1_2_8_30_1 doi: 10.1093/aob/mch056 – ident: e_1_2_8_94_1 doi: 10.1093/jxb/erv241 – ident: e_1_2_8_6_1 doi: 10.1111/j.1469-8137.1996.tb01847.x – ident: e_1_2_8_51_1 doi: 10.1023/A:1013324727040 – ident: e_1_2_8_8_1 doi: 10.1104/pp.114.243519 – ident: e_1_2_8_98_1 doi: 10.1071/FP05005 – ident: e_1_2_8_24_1 doi: 10.2135/cropsci2010.03.0178 – ident: e_1_2_8_88_1 doi: 10.1002/wsbm.87 – ident: e_1_2_8_15_1 doi: 10.2135/cropsci2016.08.0704 – ident: e_1_2_8_3_1 doi: 10.1073/pnas.88.8.3502 – ident: e_1_2_8_54_1 doi: 10.1093/jxb/ery048 – volume: 182 year: 2019 ident: e_1_2_8_97_1 article-title: Shared genetic control of root system architecture between Zea mays and Sorghum bicolor publication-title: Plant Physiology – ident: e_1_2_8_61_1 doi: 10.1186/s12870-019-1653-x – ident: e_1_2_8_58_1 doi: 10.1007/s00122-011-1690-9 – ident: e_1_2_8_26_1 doi: 10.1016/S1360-1385(01)02023-4 – ident: e_1_2_8_4_1 – volume: 3 start-page: 307 year: 2012 ident: e_1_2_8_71_1 article-title: Inferring quantitative trait pathways associated with bull fertility from a genome‐wide association study publication-title: Frontiers in Genetics – ident: e_1_2_8_7_1 doi: 10.1093/bioinformatics/btm308 – ident: e_1_2_8_60_1 doi: 10.1007/s11104-007-9492-1 – ident: e_1_2_8_62_1 doi: 10.1111/j.1365-313X.2005.02509.x – ident: e_1_2_8_2_1 doi: 10.1038/srep05563 – ident: e_1_2_8_22_1 doi: 10.1051/agro:19980305 – ident: e_1_2_8_86_1 doi: 10.1093/jxb/erq429 – ident: e_1_2_8_80_1 doi: 10.1007/s11104-010-0343-0 – ident: e_1_2_8_47_1 doi: 10.1016/j.plantsci.2018.09.015 – ident: e_1_2_8_85_1 doi: 10.1023/A:1026146615248 – ident: e_1_2_8_21_1 doi: 10.1016/j.fcr.2011.03.001 – ident: e_1_2_8_93_1 doi: 10.1093/jxb/erv074 – ident: e_1_2_8_33_1 doi: 10.1038/s41467-018-05636-0 – ident: e_1_2_8_37_1 doi: 10.1016/j.ceca.2014.05.003 – ident: e_1_2_8_68_1 doi: 10.3117/plantroot.1.57 – ident: e_1_2_8_69_1 doi: 10.1007/BF00008076 – ident: e_1_2_8_45_1 doi: 10.1071/FP03255 – ident: e_1_2_8_18_1 doi: 10.1093/genetics/154.1.437 – ident: e_1_2_8_43_1 doi: 10.1104/pp.104.059196 – ident: e_1_2_8_63_1 doi: 10.1104/pp.15.00145 – ident: e_1_2_8_64_1 doi: 10.1105/tpc.109.068395 – ident: e_1_2_8_17_1 doi: 10.1093/jxb/erp265 – ident: e_1_2_8_90_1 doi: 10.1626/pps.8.553 – ident: e_1_2_8_76_1 doi: 10.1093/jxb/eraa084 – ident: e_1_2_8_25_1 doi: 10.1007/s11104-008-9780-4 – ident: e_1_2_8_65_1 doi: 10.1626/jcs.60.543 – ident: e_1_2_8_38_1 doi: 10.1007/s11104-006-9008-4 – ident: e_1_2_8_82_1 doi: 10.1105/tpc.16.00806 – ident: e_1_2_8_14_1 doi: 10.1016/j.tplants.2007.08.012 – ident: e_1_2_8_55_1 doi: 10.1098/rstb.2011.0243 – ident: e_1_2_8_50_1 doi: 10.1111/nph.15738 – ident: e_1_2_8_67_1 doi: 10.1007/s10681-008-9833-z – ident: e_1_2_8_20_1 doi: 10.1093/jxb/eri303 – ident: e_1_2_8_66_1 doi: 10.1093/jxb/erw115 – ident: e_1_2_8_83_1 doi: 10.1007/s11104-010-0623-8 – ident: e_1_2_8_35_1 doi: 10.1360/04wc0142 – ident: e_1_2_8_39_1 doi: 10.1093/aob/mcr175 – ident: e_1_2_8_53_1 doi: 10.1093/aob/mcs293 – ident: e_1_2_8_87_1 doi: 10.1038/ng.2725 |
SSID | ssj0001479 |
Score | 2.5673935 |
Snippet | Crops with reduced nutrient and water requirements are urgently needed in global agriculture. Root growth angle plays an important role in nutrient and water... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 837 |
SubjectTerms | Biomass Calcineurin Calcineurin - genetics Calcineurin - metabolism Cbl protein computer simulation Corn crown root environment Gene mapping genes Genome-Wide Association Study Genomes Genotypes GWAS Kinases mutants New varieties Nitrogen Nitrogen - metabolism Nucleotides Nutrient requirements phenotype Phenotyping phytomass Plant biomass Plant growth Plant Roots - metabolism Protein kinase Protein Kinases - metabolism Proteins reverse genetics root architecture root growth Serine - genetics Serine - metabolism Single-nucleotide polymorphism Threonine Threonine - metabolism Water - metabolism Water requirements Zea mays - metabolism |
Title | Root angle in maize influences nitrogen capture and is regulated by calcineurin B‐like protein (CBL)‐interacting serine/threonine‐protein kinase 15 (ZmCIPK15) |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fpce.14135 https://www.ncbi.nlm.nih.gov/pubmed/34169548 https://www.proquest.com/docview/2633228303 https://www.proquest.com/docview/2545594946 https://www.proquest.com/docview/2661040060 |
Volume | 45 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKBRIXHuW1UCqDOGwPaZPYSdbixK5aladWFZUqhBQ5flTRbpPVJnvYnvgJ_Ah-Gb-EGecB5SXELbInkp3MeD7bM98Q8syCU9SJ0J7lKoQNip95EmCpp2wsJM98aVw5n7fv4qMT_uo0Ot0gz7tcmIYfoj9wQ8tw6zUauMyqH4x8oQyYecAwwRxjtRAQHX-njgp4w7OH4YtJIoKWVQijePo3L_uiXwDmZbzqHM7hTfKxG2oTZzLbW9XZnrr4icXxP-dyi9xogSh90WjObbJhii1yrSlNud4iV8clwMb1HfLluCxrKouzuaF5Qc9lfoEPbWmTisKSsCxBC6mSC7yNAFFN84oumyL3RtNsDX1zvMDHk306_vrp8zyfGeooIqBhOBm_2YVGZK5wOVvFGa1cVuJ-DZqG58UGujvxWV6A56VBRIcfzicvp6-DaPcuOTk8eD858trSDp7iADI864tES-kzzUZaCKWM9kdaS6Zgw6aySGbMCon8iCZILEAaa7XV3IaBMSzyFbtHNouyMA8ItQAyEpuArzeW-0ZKqyMGTjdQwSiLrBiQYfeTU9XynmP5jXna7X_g66fu6w_I01500ZB9_E5ou9OUtLX3Kg1jxhyXGhuQJ303WCpev8jClCuQAbAaCS54_BcZgEu4rMb-gNxvtLAfCeCNGOn5YEJOl_48xHQ6OXAPD_9d9BG5HmJmhwuv2yab9XJlHgPeqrMdciXk0x1nXt8AI_UrDA |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtNAFL0qBQQbHuUVKDAgkNKFi-3xI16wIGmrhKRVVbVS1Y0ZzyOKktpRnAilKz6Bj2DJr_ATfAl3xg8oL7Hpgp3lubLGM3Pmnpm5cy7AC4VOUYSRsJTHXVyg2InFkJZaXAUR8xKbSZPOZ3cv6B55b4_94xX4XN2FKfQh6g03jQwzX2uA6w3pH1A-5RJx7tAqpLIvl-9xwZa_7m1h77503Z3tw07XKnMKWNxD72YpOwoFYzYVtCWiiHMp7JYQjHJcKfDEZwlVEdPCfNIJFfpSpYQSnnIdKalvc4rfvQSXdQZxrdS_dfBdrMrxCmU_HTAZhpFT6hjpuKG6que93y-U9jxDNi5u5yZ8qRqniGwZby7mySY_-0k38n9pvVtwo-Ta5E0BjtuwItM1uFpk31yuwZV2hsx4eQc-HWTZnLB0OJFklJJTNjrTD2X2lpzgrDfLEGiEs6k-cEFTQUY5mcmhTn4mBUmWWDbRMQr68IK0v374OBmNJTEqGPii2WkPNvClFucw19LSIcnNxctXcwST3hKXWFyZj0cpkgvi-KR5ctrp7fcdf-MuHF1IW92D1TRL5QMgCnlUqEKkM1J5tmRMCZ8ir3C400p8FTWgWY2qmJfS7jrDyCSulnjY27Hp7QY8r02nhZ7J74zWq6EZl1NaHrsBpUYujjbgWV2Mk5E-YWKpzBZog3zcj7zIC_5ig4xQe47AbsD9YtjXNUFKFWgFQvwhM3j_XMV4v7NtHh7-u-lTuNY93B3Eg95e_xFcd_VFFhNNuA6r89lCPkZ6OU-eGFQTeHfRQPgGFuOLUA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LbtNAFL0qBSo2CAqUQIEBgZQuLGzP2M4sWJC0UUNKFSEqVWzMeB6V1dSOklQorPgEPoIdf8WXcGf8EBUPsenO8lxZY93XmZk75wI8N5gUVcKVZ5gMcYHiZ55AWOpJE3PBMl9o187n7WG8f8TeHEfHa_C9uQtT8UO0G27WM1y8tg4-U-YXJ59JjW4e0KaicqxXn3C9tng12kXlvgjD4d77wb5XtxTwJMPk5hmfJ0oInyraU5xLqZXfU0pQiQsFmUUio4YLy8ung8RgKjVGGcVMGGhNI19S_O4VuGoPF239WMgmbdgPWEXsZ-slk4QHNY2RLRtqp3ox-f2GaC8CZJfhhrfgZg1NyevKlm7Dmi424XrVrHK1Cdf6JQLJ1R349q4sl0QUJ1NN8oKcifyzfaibnSwIBol5iXZJpJjZ8wkUVSRfkHnV9l4rkq1wbGqP9O1eP-n_-PJ1mp9q4kgj8EV30D_YwZeWy8Ld4ipOyMLdU3y5RNuzO8gahxvx07zAXEyCiHQ_nA1Gk3EQ7dyFo0vRzD1YL8pC3wdiEHYkJsHsrw3ztRBGRRTTcCCDXhYZ3oFuo4VU1kzotiHHNG1WRKiw1CmsA89a0VlF__Enoe1GlWkdARZpGFPq2NVoB562w-i79kBGFLo8RxmErxFnnMX_kEEAZQNt7HdgqzKTdiaIQGJL2Ic_5Ozm71NMJ4M99_Dg_0WfwMZkd5gejA7HD-FGaK99uNq7bVhfzs_1IwRjy-yxcwICHy_b634CpqJIxA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Root+angle+in+maize+influences+nitrogen+capture+and+is+regulated+by+calcineurin+B%E2%80%90like+protein+%28CBL%29%E2%80%90interacting+serine%2Fthreonine%E2%80%90protein+kinase+15+%28ZmCIPK15%29&rft.jtitle=Plant%2C+cell+and+environment&rft.au=Schneider%2C+Hannah+M.&rft.au=Lor%2C+Vai+Sa+Nee&rft.au=Hanlon%2C+Meredith+T.&rft.au=Perkins%2C+Alden&rft.date=2022-03-01&rft.issn=0140-7791&rft.eissn=1365-3040&rft.volume=45&rft.issue=3&rft.spage=837&rft.epage=853&rft_id=info:doi/10.1111%2Fpce.14135&rft.externalDBID=10.1111%252Fpce.14135&rft.externalDocID=PCE14135 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0140-7791&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0140-7791&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0140-7791&client=summon |