Root angle in maize influences nitrogen capture and is regulated by calcineurin B‐like protein (CBL)‐interacting serine/threonine‐protein kinase 15 (ZmCIPK15)

Crops with reduced nutrient and water requirements are urgently needed in global agriculture. Root growth angle plays an important role in nutrient and water acquisition. A maize diversity panel of 481 genotypes was screened for variation in root angle employing a high‐throughput field phenotyping p...

Full description

Saved in:
Bibliographic Details
Published inPlant, cell and environment Vol. 45; no. 3; pp. 837 - 853
Main Authors Schneider, Hannah M., Lor, Vai Sa Nee, Hanlon, Meredith T., Perkins, Alden, Kaeppler, Shawn M., Borkar, Aditi N., Bhosale, Rahul, Zhang, Xia, Rodriguez, Jonas, Bucksch, Alexander, Bennett, Malcolm J., Brown, Kathleen M., Lynch, Jonathan P.
Format Journal Article
LanguageEnglish
Published United States Wiley Subscription Services, Inc 01.03.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Crops with reduced nutrient and water requirements are urgently needed in global agriculture. Root growth angle plays an important role in nutrient and water acquisition. A maize diversity panel of 481 genotypes was screened for variation in root angle employing a high‐throughput field phenotyping platform. Genome‐wide association mapping identified several single nucleotide polymorphisms (SNPs) associated with root angle, including one located in the root expressed CBL‐interacting serine/threonine‐protein kinase 15 (ZmCIPK15) gene (LOC100285495). Reverse genetic studies validated the functional importance of ZmCIPK15, causing a approximately 10° change in root angle in specific nodal positions. A steeper root growth angle improved nitrogen capture in silico and in the field. OpenSimRoot simulations predicted at 40 days of growth that this change in angle would improve nitrogen uptake by 11% and plant biomass by 4% in low nitrogen conditions. In field studies under suboptimal N availability, the cipk15 mutant with steeper growth angles had 18% greater shoot biomass and 29% greater shoot nitrogen accumulation compared to the wild type after 70 days of growth. We propose that a steeper root growth angle modulated by ZmCIPK15 will facilitate efforts to develop new crop varieties with optimal root architecture for improved performance under edaphic stress. Genome‐wide association mapping identified CBL‐interacting serine/threonine‐protein kinase 15 (ZmCIPK15) gene that controls root angle and is associated with increased deep nitrogen capture and plant performance in low nitrogen environments.
AbstractList Crops with reduced nutrient and water requirements are urgently needed in global agriculture. Root growth angle plays an important role in nutrient and water acquisition. A maize diversity panel of 481 genotypes was screened for variation in root angle employing a high-throughput field phenotyping platform. Genome-wide association mapping identified several single nucleotide polymorphisms (SNPs) associated with root angle, including one located in the root expressed CBL-interacting serine/threonine-protein kinase 15 (ZmCIPK15) gene (LOC100285495). Reverse genetic studies validated the functional importance of ZmCIPK15, causing a approximately 10° change in root angle in specific nodal positions. A steeper root growth angle improved nitrogen capture in silico and in the field. OpenSimRoot simulations predicted at 40 days of growth that this change in angle would improve nitrogen uptake by 11% and plant biomass by 4% in low nitrogen conditions. In field studies under suboptimal N availability, the cipk15 mutant with steeper growth angles had 18% greater shoot biomass and 29% greater shoot nitrogen accumulation compared to the wild type after 70 days of growth. We propose that a steeper root growth angle modulated by ZmCIPK15 will facilitate efforts to develop new crop varieties with optimal root architecture for improved performance under edaphic stress.Crops with reduced nutrient and water requirements are urgently needed in global agriculture. Root growth angle plays an important role in nutrient and water acquisition. A maize diversity panel of 481 genotypes was screened for variation in root angle employing a high-throughput field phenotyping platform. Genome-wide association mapping identified several single nucleotide polymorphisms (SNPs) associated with root angle, including one located in the root expressed CBL-interacting serine/threonine-protein kinase 15 (ZmCIPK15) gene (LOC100285495). Reverse genetic studies validated the functional importance of ZmCIPK15, causing a approximately 10° change in root angle in specific nodal positions. A steeper root growth angle improved nitrogen capture in silico and in the field. OpenSimRoot simulations predicted at 40 days of growth that this change in angle would improve nitrogen uptake by 11% and plant biomass by 4% in low nitrogen conditions. In field studies under suboptimal N availability, the cipk15 mutant with steeper growth angles had 18% greater shoot biomass and 29% greater shoot nitrogen accumulation compared to the wild type after 70 days of growth. We propose that a steeper root growth angle modulated by ZmCIPK15 will facilitate efforts to develop new crop varieties with optimal root architecture for improved performance under edaphic stress.
Crops with reduced nutrient and water requirements are urgently needed in global agriculture. Root growth angle plays an important role in nutrient and water acquisition. A maize diversity panel of 481 genotypes was screened for variation in root angle employing a high‐throughput field phenotyping platform. Genome‐wide association mapping identified several single nucleotide polymorphisms (SNPs) associated with root angle, including one located in the root expressed CBL‐interacting serine/threonine‐protein kinase 15 (ZmCIPK15) gene (LOC100285495). Reverse genetic studies validated the functional importance of ZmCIPK15, causing a approximately 10° change in root angle in specific nodal positions. A steeper root growth angle improved nitrogen capture in silico and in the field. OpenSimRoot simulations predicted at 40 days of growth that this change in angle would improve nitrogen uptake by 11% and plant biomass by 4% in low nitrogen conditions. In field studies under suboptimal N availability, the cipk15 mutant with steeper growth angles had 18% greater shoot biomass and 29% greater shoot nitrogen accumulation compared to the wild type after 70 days of growth. We propose that a steeper root growth angle modulated by ZmCIPK15 will facilitate efforts to develop new crop varieties with optimal root architecture for improved performance under edaphic stress.
Crops with reduced nutrient and water requirements are urgently needed in global agriculture. Root growth angle plays an important role in nutrient and water acquisition. A maize diversity panel of 481 genotypes was screened for variation in root angle employing a high‐throughput field phenotyping platform. Genome‐wide association mapping identified several single nucleotide polymorphisms (SNPs) associated with root angle, including one located in the root expressed CBL‐interacting serine/threonine‐protein kinase 15 ( ZmCIPK15 ) gene (LOC100285495). Reverse genetic studies validated the functional importance of ZmCIPK15, causing a approximately 10° change in root angle in specific nodal positions. A steeper root growth angle improved nitrogen capture in silico and in the field. OpenSimRoot simulations predicted at 40 days of growth that this change in angle would improve nitrogen uptake by 11% and plant biomass by 4% in low nitrogen conditions. In field studies under suboptimal N availability, the cipk15 mutant with steeper growth angles had 18% greater shoot biomass and 29% greater shoot nitrogen accumulation compared to the wild type after 70 days of growth. We propose that a steeper root growth angle modulated by ZmCIPK15 will facilitate efforts to develop new crop varieties with optimal root architecture for improved performance under edaphic stress. Genome‐wide association mapping identified CBL‐interacting serine/threonine‐protein kinase 15 ( ZmCIPK15 ) gene that controls root angle and is associated with increased deep nitrogen capture and plant performance in low nitrogen environments.
Crops with reduced nutrient and water requirements are urgently needed in global agriculture. Root growth angle plays an important role in nutrient and water acquisition. A maize diversity panel of 481 genotypes was screened for variation in root angle employing a high‐throughput field phenotyping platform. Genome‐wide association mapping identified several single nucleotide polymorphisms (SNPs) associated with root angle, including one located in the root expressed CBL‐interacting serine/threonine‐protein kinase 15 (ZmCIPK15) gene (LOC100285495). Reverse genetic studies validated the functional importance of ZmCIPK15, causing a approximately 10° change in root angle in specific nodal positions. A steeper root growth angle improved nitrogen capture in silico and in the field. OpenSimRoot simulations predicted at 40 days of growth that this change in angle would improve nitrogen uptake by 11% and plant biomass by 4% in low nitrogen conditions. In field studies under suboptimal N availability, the cipk15 mutant with steeper growth angles had 18% greater shoot biomass and 29% greater shoot nitrogen accumulation compared to the wild type after 70 days of growth. We propose that a steeper root growth angle modulated by ZmCIPK15 will facilitate efforts to develop new crop varieties with optimal root architecture for improved performance under edaphic stress. Genome‐wide association mapping identified CBL‐interacting serine/threonine‐protein kinase 15 (ZmCIPK15) gene that controls root angle and is associated with increased deep nitrogen capture and plant performance in low nitrogen environments.
Author Kaeppler, Shawn M.
Bucksch, Alexander
Borkar, Aditi N.
Hanlon, Meredith T.
Lor, Vai Sa Nee
Rodriguez, Jonas
Zhang, Xia
Schneider, Hannah M.
Brown, Kathleen M.
Perkins, Alden
Bennett, Malcolm J.
Lynch, Jonathan P.
Bhosale, Rahul
Author_xml – sequence: 1
  givenname: Hannah M.
  surname: Schneider
  fullname: Schneider, Hannah M.
  organization: The Pennsylvania State University
– sequence: 2
  givenname: Vai Sa Nee
  surname: Lor
  fullname: Lor, Vai Sa Nee
  organization: University of Wisconsin
– sequence: 3
  givenname: Meredith T.
  surname: Hanlon
  fullname: Hanlon, Meredith T.
  organization: The Pennsylvania State University
– sequence: 4
  givenname: Alden
  surname: Perkins
  fullname: Perkins, Alden
  organization: The Pennsylvania State University
– sequence: 5
  givenname: Shawn M.
  surname: Kaeppler
  fullname: Kaeppler, Shawn M.
  organization: University of Wisconsin
– sequence: 6
  givenname: Aditi N.
  surname: Borkar
  fullname: Borkar, Aditi N.
  organization: University of Nottingham
– sequence: 7
  givenname: Rahul
  surname: Bhosale
  fullname: Bhosale, Rahul
  organization: University of Nottingham
– sequence: 8
  givenname: Xia
  surname: Zhang
  fullname: Zhang, Xia
  organization: University of Wisconsin
– sequence: 9
  givenname: Jonas
  surname: Rodriguez
  fullname: Rodriguez, Jonas
  organization: University of Wisconsin
– sequence: 10
  givenname: Alexander
  surname: Bucksch
  fullname: Bucksch, Alexander
  organization: University of Georgia
– sequence: 11
  givenname: Malcolm J.
  surname: Bennett
  fullname: Bennett, Malcolm J.
  organization: University of Nottingham
– sequence: 12
  givenname: Kathleen M.
  surname: Brown
  fullname: Brown, Kathleen M.
  organization: The Pennsylvania State University
– sequence: 13
  givenname: Jonathan P.
  orcidid: 0000-0002-7265-9790
  surname: Lynch
  fullname: Lynch, Jonathan P.
  email: jpl4@psu.edu
  organization: The Pennsylvania State University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34169548$$D View this record in MEDLINE/PubMed
BookMark eNqFks1u1DAUhS1URKeFBS-ALLGZWaRjx3YSL2lUoGIkKgQbNpHHvhncOs5gO0LDqo_Qh-DJeBJcpmVRCfDGV-d-98g_5wgd-NEDQs8pOaF5LbcaTiinTDxCM8oqUTDCyQGaEcpJUdeSHqKjGC8JyUItn6BDxmklBW9m6MeHcUxY-Y0DbD0elP1-W_RuAq8hYm9TGDfgsVbbNAXIqME24gCbyakEBq93uee09TCF7HD68_rG2SvA2zAmyMK8PV0tsmh9gqB0sn6DI2QUlulLgNHnKrfv8SvrVQRMBZ5_Htrzi3dULJ6ix71yEZ7d7cfo0-uzj-3bYvX-zXn7alVoXlJR9ETWRinCDGuMlFqDIY0ximkuhV4LtWa9VJQ1JdC6l5T0vekN70sKwATR7BjN9775MF8niKkbbNTgnPIwTrErq4rmlyUV-T8quBCSS15l9OUD9HKcgs8XyYaMlWXDCMvUiztqWg9gum2wgwq77v6rMrDYAzqMMQbo_yCUdLcx6HIMut8xyOzyAattUsmOPgVl3b8mvlkHu79bdxft2X7iFxdcxpk
CitedBy_id crossref_primary_10_1007_s00299_025_03457_2
crossref_primary_10_1093_jxb_erad421
crossref_primary_10_3390_plants12234015
crossref_primary_10_1073_pnas_2201350119
crossref_primary_10_3390_genes13112121
crossref_primary_10_12688_f1000research_140649_1
crossref_primary_10_1002_agj2_21528
crossref_primary_10_1111_nph_18717
crossref_primary_10_1007_s00122_024_04606_z
crossref_primary_10_1111_tpj_15560
crossref_primary_10_1111_jipb_13603
crossref_primary_10_1093_plcell_koae041
crossref_primary_10_1111_pce_14915
crossref_primary_10_1111_pce_14567
crossref_primary_10_1016_j_jia_2023_04_022
crossref_primary_10_1016_j_tplants_2022_04_001
crossref_primary_10_1093_aobpla_plac050
crossref_primary_10_1038_s41477_022_01274_z
crossref_primary_10_1111_nph_18733
crossref_primary_10_1016_j_jgg_2024_10_007
crossref_primary_10_1111_tpj_16627
crossref_primary_10_1016_j_plaphy_2023_02_023
crossref_primary_10_1093_gigascience_giac080
crossref_primary_10_3389_fpls_2022_1010165
crossref_primary_10_1007_s11032_024_01508_2
crossref_primary_10_1016_j_fcr_2023_109109
crossref_primary_10_1002_csc2_21149
crossref_primary_10_1111_ppl_14543
crossref_primary_10_1016_j_agwat_2025_109354
crossref_primary_10_1016_j_plaphy_2024_108386
crossref_primary_10_3389_fpls_2022_827369
crossref_primary_10_3390_ijms25126791
crossref_primary_10_1093_plphys_kiae134
crossref_primary_10_1016_j_tplants_2024_01_008
crossref_primary_10_3390_resources13090120
crossref_primary_10_1073_pnas_2219668120
crossref_primary_10_1042_BCJ20220245
crossref_primary_10_3389_fpls_2023_1260005
crossref_primary_10_3390_cells11213471
crossref_primary_10_3390_ijms241310492
crossref_primary_10_3390_genes13020181
crossref_primary_10_1111_pce_14269
crossref_primary_10_1016_j_jia_2022_07_003
crossref_primary_10_1111_ppl_13787
crossref_primary_10_3390_plants12020412
crossref_primary_10_3390_stresses3030041
crossref_primary_10_1002_imt2_70015
crossref_primary_10_1016_j_jgg_2024_05_001
crossref_primary_10_3389_fpls_2021_808001
crossref_primary_10_1002_tpg2_20395
crossref_primary_10_1007_s11104_023_06301_2
Cites_doi 10.1016/j.fcr.2010.10.003
10.4238/gmr16039864
10.1038/ng.546
10.1186/s13007-015-0093-3
10.1002/tpg2.20003
10.1093/jxb/eru508
10.1038/nature22971
10.1093/aob/mcw112
10.2135/cropsci2008.03.0152
10.1111/j.1365-313X.2008.03685.x
10.1104/pp.111.175414
10.1016/j.tplants.2008.10.005
10.1007/s11104-015-2379-7
10.1093/jxb/erz293
10.1093/bioinformatics/btz308
10.1186/1471-2164-8-116
10.3389/fpls.2013.00355
10.1371/journal.pgen.1005767
10.1093/aob/mcy092
10.1007/978-1-4612-2694-9_4
10.1023/A:1010381919003
10.3389/fpls.2013.00186
10.1007/BF02983986
10.1016/j.fcr.2011.01.001
10.1016/j.cell.2009.07.004
10.1016/j.fcr.2012.09.010
10.1016/0098-8472(93)90062-K
10.1016/j.jcg.2011.01.005
10.1016/S1360-1385(01)01946-X
10.1093/jxb/ers111
10.1071/FP06055
10.1111/nph.14641
10.1016/j.gpb.2020.10.007
10.1016/j.fcr.2004.07.003
10.1104/pp.109.1.7
10.1139/b86-335
10.1093/jxb/erm097
10.1093/aob/mch056
10.1093/jxb/erv241
10.1111/j.1469-8137.1996.tb01847.x
10.1023/A:1013324727040
10.1104/pp.114.243519
10.1071/FP05005
10.2135/cropsci2010.03.0178
10.1002/wsbm.87
10.2135/cropsci2016.08.0704
10.1073/pnas.88.8.3502
10.1093/jxb/ery048
10.1186/s12870-019-1653-x
10.1007/s00122-011-1690-9
10.1016/S1360-1385(01)02023-4
10.1093/bioinformatics/btm308
10.1007/s11104-007-9492-1
10.1111/j.1365-313X.2005.02509.x
10.1038/srep05563
10.1051/agro:19980305
10.1093/jxb/erq429
10.1007/s11104-010-0343-0
10.1016/j.plantsci.2018.09.015
10.1023/A:1026146615248
10.1016/j.fcr.2011.03.001
10.1093/jxb/erv074
10.1038/s41467-018-05636-0
10.1016/j.ceca.2014.05.003
10.3117/plantroot.1.57
10.1007/BF00008076
10.1071/FP03255
10.1093/genetics/154.1.437
10.1104/pp.104.059196
10.1104/pp.15.00145
10.1105/tpc.109.068395
10.1093/jxb/erp265
10.1626/pps.8.553
10.1093/jxb/eraa084
10.1007/s11104-008-9780-4
10.1626/jcs.60.543
10.1007/s11104-006-9008-4
10.1105/tpc.16.00806
10.1016/j.tplants.2007.08.012
10.1098/rstb.2011.0243
10.1111/nph.15738
10.1007/s10681-008-9833-z
10.1093/jxb/eri303
10.1093/jxb/erw115
10.1007/s11104-010-0623-8
10.1360/04wc0142
10.1093/aob/mcr175
10.1093/aob/mcs293
10.1038/ng.2725
ContentType Journal Article
Copyright 2021 The Authors. published by John Wiley & Sons Ltd.
2021 The Authors. Plant, Cell & Environment published by John Wiley & Sons Ltd.
2021. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2021 The Authors. published by John Wiley & Sons Ltd.
– notice: 2021 The Authors. Plant, Cell & Environment published by John Wiley & Sons Ltd.
– notice: 2021. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7ST
C1K
SOI
7X8
7S9
L.6
DOI 10.1111/pce.14135
DatabaseName Wiley Online Library Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Calcium & Calcified Tissue Abstracts
Environment Abstracts
Environmental Sciences and Pollution Management
Environment Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Calcium & Calcified Tissue Abstracts
Environment Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic
Calcium & Calcified Tissue Abstracts
CrossRef
AGRICOLA
MEDLINE

Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Botany
EISSN 1365-3040
EndPage 853
ExternalDocumentID 34169548
10_1111_pce_14135
PCE14135
Genre article
Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: US Department of Energy ARPA‐e ROOTS
  funderid: DE‐AR0000821
– fundername: USDA National Institute of Food and Agriculture Federal Appropriations
  funderid: PEN04732
– fundername: BBSRC Discovery and Future Food Beacon Nottingham Research Fellowship
– fundername: Anne McLaren Fellowship
– fundername: Howard G Buffett Foundation
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
123
186
1OB
1OC
24P
29O
2WC
31~
33P
36B
3SF
4.4
42X
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFS
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHEFC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BAWUL
BDRZF
BFHJK
BHBCM
BIYOS
BMNLL
BNHUX
BROTX
BRXPI
BY8
CAG
COF
CS3
D-E
D-F
DC6
DCZOG
DIK
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
ECGQY
EJD
ESX
F00
F01
F04
F5P
FEDTE
FIJ
FZ0
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
IHE
IPNFZ
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OK1
P2P
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
UB1
W8V
W99
WBKPD
WH7
WHG
WIH
WIK
WIN
WNSPC
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XSW
YNT
ZZTAW
~02
~IA
~KM
~WT
AAYXX
AETEA
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7ST
C1K
SOI
7X8
7S9
L.6
ID FETCH-LOGICAL-c4215-f097daa03d38d99cced08dda3c495cb5ab3f9a1382e17f910ffdfd4f21ee350c3
IEDL.DBID DR2
ISSN 0140-7791
1365-3040
IngestDate Fri Jul 11 18:33:24 EDT 2025
Fri Jul 11 16:39:29 EDT 2025
Sun Jul 20 09:11:00 EDT 2025
Mon Jul 21 05:59:04 EDT 2025
Tue Jul 01 04:28:45 EDT 2025
Thu Apr 24 22:57:00 EDT 2025
Wed Jan 22 16:27:34 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords root architecture
GWAS
phenotyping
crown root
Language English
License Attribution-NonCommercial-NoDerivs
2021 The Authors. Plant, Cell & Environment published by John Wiley & Sons Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4215-f097daa03d38d99cced08dda3c495cb5ab3f9a1382e17f910ffdfd4f21ee350c3
Notes Funding information
Anne McLaren Fellowship; BBSRC Discovery and Future Food Beacon Nottingham Research Fellowship; Howard G Buffett Foundation; US Department of Energy ARPA‐e ROOTS, Grant/Award Number: DE‐AR0000821; USDA National Institute of Food and Agriculture Federal Appropriations, Grant/Award Number: PEN04732
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-7265-9790
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fpce.14135
PMID 34169548
PQID 2633228303
PQPubID 37957
PageCount 17
ParticipantIDs proquest_miscellaneous_2661040060
proquest_miscellaneous_2545594946
proquest_journals_2633228303
pubmed_primary_34169548
crossref_primary_10_1111_pce_14135
crossref_citationtrail_10_1111_pce_14135
wiley_primary_10_1111_pce_14135_PCE14135
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate March 2022
2022-03-00
20220301
PublicationDateYYYYMMDD 2022-03-01
PublicationDate_xml – month: 03
  year: 2022
  text: March 2022
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Oxford
PublicationTitle Plant, cell and environment
PublicationTitleAlternate Plant Cell Environ
PublicationYear 2022
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2018; 122
2013; 4
2012; 124
2015; 388
2006; 33
2005; 138
2011; 62
1991; 60
2019; 19
2008; 303
2012; 367
2019; 282
2009; 49
2011; 156
2014; 134
1925; 16
2018; 9
1998; 18
2009; 14
2009; 57
2004; 31
2014; 4
1991; 88
2016; 118
1993; 33
2013; 112
2007; 8
2009; 166
2008; 316
2020b; 71
2005; 32
1996; 132
2014; 166
2007; 1
2010; 2
2007; 23
2014; 56
2011; 122
2006; 287
2011; 121
2012; 63
2011; 120
2019; 70
2009; 21
2004; 49
2009; 60
2013; 45
2019; 35
2015; 167
2015; 11
2019; 223
1995
1994
2000; 154
2017; 29
2013; 140
2002
2004; 90
2011; 38
2015; 9
2019; 182
2007; 12
2003; 255
2005; 44
2007; 58
2017; 215
2009; 138
2016; 12
2018; 69
2001; 232
1994; 165
2018; 17
2010; 42
2020a; 13
2011; 108
2012; 3
2004; 93
2001; 6
1986; 64
2021
2005; 8
2017; 57
2011; 51
2015; 66
1995; 109
2010; 333
2018
2005; 56
2017; 546
2016; 67
2011; 341
2001; 237
e_1_2_8_26_1
Kolukisaoglu U. (e_1_2_8_42_1) 2014; 134
e_1_2_8_49_1
e_1_2_8_68_1
e_1_2_8_5_1
e_1_2_8_9_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_64_1
e_1_2_8_87_1
Peñagaricano F. (e_1_2_8_71_1) 2012; 3
e_1_2_8_41_1
e_1_2_8_60_1
e_1_2_8_83_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_57_1
e_1_2_8_91_1
e_1_2_8_95_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_76_1
e_1_2_8_30_1
e_1_2_8_72_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_48_1
Zheng Z. (e_1_2_8_97_1) 2019; 182
e_1_2_8_2_1
e_1_2_8_6_1
e_1_2_8_21_1
e_1_2_8_67_1
e_1_2_8_44_1
e_1_2_8_86_1
e_1_2_8_63_1
e_1_2_8_40_1
e_1_2_8_82_1
e_1_2_8_18_1
e_1_2_8_14_1
e_1_2_8_37_1
e_1_2_8_79_1
e_1_2_8_94_1
e_1_2_8_90_1
e_1_2_8_98_1
Stelpflug S. C. (e_1_2_8_81_1) 2015; 9
e_1_2_8_10_1
e_1_2_8_56_1
e_1_2_8_33_1
e_1_2_8_75_1
e_1_2_8_52_1
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_3_1
e_1_2_8_7_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_66_1
e_1_2_8_89_1
e_1_2_8_62_1
e_1_2_8_85_1
e_1_2_8_17_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_59_1
e_1_2_8_70_1
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_78_1
e_1_2_8_51_1
e_1_2_8_74_1
e_1_2_8_93_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_69_1
e_1_2_8_80_1
e_1_2_8_4_1
e_1_2_8_8_1
e_1_2_8_88_1
e_1_2_8_23_1
e_1_2_8_65_1
e_1_2_8_84_1
e_1_2_8_61_1
e_1_2_8_39_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_58_1
e_1_2_8_92_1
e_1_2_8_96_1
Giri J. (e_1_2_8_19_1) 2018; 9
e_1_2_8_31_1
e_1_2_8_77_1
e_1_2_8_12_1
e_1_2_8_54_1
R Core Team (e_1_2_8_73_1) 2018
e_1_2_8_50_1
References_xml – volume: 56
  start-page: 81
  year: 2014
  end-page: 95
  article-title: Comprehensive structural, interaction and expression analysis of CBL and CIPK complement during abiotic stresses and development in rice
  publication-title: Cell Calcium
– volume: 132
  start-page: 281
  year: 1996
  end-page: 288
  article-title: Effect of phosphorus deficiency on growth angle of basal roots in
  publication-title: New Phytologist
– volume: 57
  start-page: 264
  year: 2009
  end-page: 278
  article-title: AtCIPK8, a CBL‐interacting protein kinase, regulates the low‐affinity phase of the primary nitrate response
  publication-title: Plant Journal
– volume: 88
  start-page: 3502
  year: 1991
  end-page: 3506
  article-title: Inactivation of maize transposon mu suppresses a mutant phenotype by activating an outward‐reading promoter near the end of Mu1
  publication-title: Proceedings of the National Academy of Sciences
– volume: 51
  start-page: 704
  year: 2011
  end-page: 715
  article-title: Genetic diversity of a maize association population with restricted phenology
  publication-title: Crop Science
– volume: 138
  start-page: 55
  year: 2005
  end-page: 58
  article-title: The maize genetics and genomics database. The community resource for access to diverse maize data
  publication-title: Plant Physiology
– volume: 333
  start-page: 287
  year: 2010
  end-page: 299
  article-title: Morphological and architectural development of root systems in sorghum and maize
  publication-title: Plant and Soil
– volume: 70
  start-page: 5311
  year: 2019
  end-page: 5325
  article-title: Genotypic variation and nitrogen stress effects on root anatomy in maize are node specific
  publication-title: Journal of Experimental Botany
– volume: 60
  start-page: 3989
  year: 2009
  end-page: 4002
  article-title: Is it good noise? The role of developmental instability in the shaping of a root system
  publication-title: Journal of Experimental Botany
– volume: 134
  start-page: 43
  year: 2014
  end-page: 58
  article-title: Calcium sensors and their interacting protein kinases: Genomics of the arabidopsis and rice CBL‐CIPK signaling networks
  publication-title: Genome Analysis
– volume: 341
  start-page: 75
  year: 2011
  end-page: 87
  article-title: Shovelomics: High throughput phenotyping of maize ( L.) root architecture in the field
  publication-title: Plant and Soil
– volume: 3
  start-page: 307
  year: 2012
  article-title: Inferring quantitative trait pathways associated with bull fertility from a genome‐wide association study
  publication-title: Frontiers in Genetics
– volume: 12
  year: 2016
  article-title: Iterative usage of fixed and random effect models for powerful and efficient genome‐wide association studies
  publication-title: PLoS Genetics
– volume: 64
  start-page: 2524
  year: 1986
  end-page: 2537
  article-title: The nodal roots of : Their development in relation to structural features of the stem
  publication-title: Canadian Journal of Botany
– volume: 215
  start-page: 1274
  year: 2017
  end-page: 1286
  article-title: OpenSimRoot: Widening the scope and application of root architectural models
  publication-title: New Phytologist
– volume: 118
  start-page: 401
  year: 2016
  end-page: 414
  article-title: Impact of axial root growth angles on nitrogen acquisition in maize depends on environmental conditions
  publication-title: Annals of Botany
– volume: 367
  start-page: 1598
  year: 2012
  end-page: 1604
  article-title: New roots for agriculture: Exploiting the root phenome
  publication-title: Philosophical Transactions of the Royal Society Series B
– volume: 60
  start-page: 543
  year: 1991
  end-page: 549
  article-title: Elongation angle of nodal roots and its possible relation to spatial root distribution in maize and foxtail millet
  publication-title: Japanese Journal of Crop Science
– volume: 167
  start-page: 1430
  year: 2015
  end-page: 1439
  article-title: Phene synergism between root hair length and basal root growth angle for phosphorus acquisition
  publication-title: Plant Physiology
– volume: 49
  start-page: 299
  year: 2009
  article-title: Can changes in canopy and/or root system architecture explain historical maize yield trends in the U.S. corn belt
  publication-title: Crop Science
– volume: 124
  start-page: 97
  year: 2012
  end-page: 109
  article-title: QTL for nodal root angle in sorghum ( L. Moench) co‐locate with QTL for traits associated with drought adaptation
  publication-title: Theoretical and Applied Genetics
– volume: 33
  start-page: 141
  year: 1993
  end-page: 158
  article-title: The gravitropic response of roots and the shaping of the root system in cereal plants
  publication-title: Environmental and Experimental Botany
– volume: 63
  start-page: 3485
  year: 2012
  end-page: 3498
  article-title: Traits and selection strategies to improve root systems and water uptake in water‐limited wheat crops
  publication-title: Journal of Experimental Botany
– volume: 287
  start-page: 117
  year: 2006
  end-page: 129
  article-title: Genotypic variation in root growth angle in rice ( L.) and its association with deep root development in upland fields with different water regimes
  publication-title: Plant and Soil
– volume: 303
  start-page: 115
  year: 2008
  end-page: 129
  article-title: Genotypic variation in seedling root architectural traits and implications for drought adaptation in wheat ( L.)
  publication-title: Plant and Soil
– volume: 546
  start-page: 524
  year: 2017
  end-page: 527
  article-title: Improved maize reference genome with single‐molecule technologies
  publication-title: Nature
– volume: 1
  start-page: 57
  year: 2007
  end-page: 65
  article-title: QTL mapping of root angle in F2 populations from maize B73 x teosinte
  publication-title: Plant Root
– volume: 33
  start-page: 823
  year: 2006
  end-page: 837
  article-title: The role of root architectural traits in adaptation of wheat to water‐limited environments
  publication-title: Functional Plant Biology
– volume: 58
  start-page: 2369
  year: 2007
  end-page: 2387
  article-title: The challenge of improving nitrogen use efficiency in crop plants: Towards a more central role for genetic variability and quantitative genetics within integrated approaches
  publication-title: Journal of Experimental Botany
– volume: 69
  start-page: 3279
  year: 2018
  end-page: 3292
  article-title: Rightsizing root phenotypes for drought resistance
  publication-title: Journal of Experimental Botany
– volume: 388
  start-page: 1
  year: 2015
  end-page: 20
  article-title: Next generation shovelomics: Set up a tent and REST
  publication-title: Plant and Soil
– volume: 62
  start-page: 2485
  year: 2011
  end-page: 2494
  article-title: , a major QTL involved in deep rooting of rice under upland field conditions
  publication-title: Journal of Experimental Botany
– volume: 165
  start-page: 323
  year: 1994
  end-page: 326
  article-title: Gravitropic response growth angle and vertical distribution of roots of wheat ( L.)
  publication-title: Plant and Soil
– volume: 12
  start-page: 474
  year: 2007
  end-page: 481
  article-title: Root system architecture: Opportunities and constraints for genetic improvement of crops
  publication-title: Trends in Plant Science
– volume: 154
  start-page: 437
  year: 2000
  end-page: 446
  article-title: Mutator‐suppressible alleles of rough sheath1 and liguleless2 in maize reveal multiple mechanisms for suppression
  publication-title: Genetics
– year: 2002
– volume: 237
  start-page: 225
  year: 2001
  end-page: 237
  article-title: Topsoil foraging—An architectural adaptation of plants to low phosphorus availability
  publication-title: Plant and Soil
– year: 1995
– volume: 14
  start-page: 37
  year: 2009
  end-page: 42
  article-title: The CBL‐CIPK network in plant calcium signaling
  publication-title: Trends in Plant Science
– volume: 19
  start-page: 1
  year: 2019
  end-page: 17
  article-title: Genome‐wide association analysis of stalk biomass and anatomical traits in maize
  publication-title: BMC Plant Biology
– volume: 9
  start-page: 314
  year: 2015
  end-page: 362
  article-title: An expanded maize gene expression atlas based on RNA‐sequencing and its use to explore root development
  publication-title: The Plant Genome
– volume: 66
  start-page: 2199
  year: 2015
  end-page: 2210
  article-title: Opportunities and challenges in the subsoil: Pathways to deeper rooted crops
  publication-title: Journal of Experimental Botany
– volume: 9
  start-page: 1
  issue: 1
  year: 2018
  end-page: 9
  article-title: Rice Actin binding protein RMD controls crown root angle in response to external phosphate
  publication-title: Nature Communications
– volume: 9
  start-page: 1
  year: 2018
  end-page: 7
  article-title: Rice auxin influx carrier OsAUX1 facilitates root hair elongation in response to low external phosphate
  publication-title: Nature Communications
– volume: 90
  start-page: 19
  year: 2004
  end-page: 34
  article-title: Improving drought tolerance in maize: A view from industry
  publication-title: Field Crops Research
– volume: 35
  start-page: 4419
  year: 2019
  end-page: 4421
  article-title: Gpart: Human genome partitioning and visualization of high‐density SNP data by identifying haplotype blocks
  publication-title: Bioinformatics
– volume: 56
  start-page: 3061
  year: 2005
  end-page: 3070
  article-title: , a major constitutive QTL, affects maize root architecture and leaf ABA concentration at different water regimes
  publication-title: Journal of Experimental Botany
– volume: 71
  start-page: 3185
  year: 2020b
  end-page: 3197
  article-title: Genetic control of root architectural plasticity in maize
  publication-title: Journal of Experimental Botany
– volume: 49
  start-page: 1611
  year: 2004
  end-page: 1620
– volume: 16
  start-page: 33
  year: 1925
  end-page: 42
  article-title: “Somatic segregation” in domestic fowl
  publication-title: Journal of Genetics
– volume: 29
  start-page: 409
  year: 2017
  end-page: 422
  article-title: The kinase CIPK23 inhibits ammonium transport in
  publication-title: Plant Cell
– volume: 66
  start-page: 2347
  year: 2015
  end-page: 2358
  article-title: Evolution of US maize ( L.) root architectural and anatomical phenes over the past 100 years corresponds to increased tolerance of nitrogen stress
  publication-title: Journal of Experimental Botany
– volume: 93
  start-page: 359
  year: 2004
  end-page: 368
  article-title: Genetic dissection of root formation in maize ( ) reveals root‐type specific developmental programmes
  publication-title: Annals of Botany
– volume: 255
  start-page: 35
  year: 2003
  end-page: 54
  article-title: Searching for quantitative trait loci controlling root traits in maize: A critical appraisal
  publication-title: Plant and Soil
– volume: 45
  start-page: 1097
  year: 2013
  end-page: 1102
  article-title: Control of root system architecture by increases rice yield under drought conditions
  publication-title: Nature Genetics
– start-page: 29
  year: 1994
  end-page: 37
– year: 2018
– volume: 31
  start-page: 959
  year: 2004
  end-page: 970
  article-title: Genetic mapping of basal root gravitropism and phosphorus acquisition efficiency in common bean
  publication-title: Functional Plant Biology
– volume: 6
  start-page: 395
  year: 2001
  end-page: 397
  article-title: Dissecting calcium oscillators in plant cells
  publication-title: Trends in Plant Science
– volume: 112
  start-page: 347
  year: 2013
  end-page: 357
  article-title: Steep, cheap and deep: An ideotype to optimize water and N acquisition by maize root systems
  publication-title: Annals of Botany
– volume: 121
  start-page: 350
  year: 2011
  end-page: 362
  article-title: Genotypic variation for root traits of maize ( L.) from the Purhepecha plateau under contrasting phosphorus availability
  publication-title: Field Crops Research
– volume: 18
  start-page: 225
  year: 1998
  end-page: 235
  article-title: Genetic analysis of root traits in maize
  publication-title: Agronomie
– volume: 66
  start-page: 5493
  year: 2015
  end-page: 5505
  article-title: Intensive field phenotyping of maize ( L.) root crowns identifies phenes and phene integration associated with plant growth and nitrogen acquisition
  publication-title: Journal of Experimental Botany
– volume: 11
  start-page: 1
  year: 2015
  end-page: 12
  article-title: DIRT: A high‐throughput computing and collaboration platform for field‐based plant phenomics
  publication-title: Plant Methods
– volume: 4
  start-page: 1
  year: 2014
  end-page: 6
  article-title: Deep rooting conferred by DEEPER ROOTING 1 enhances rice yield in paddy fields
  publication-title: Scientific Reports
– volume: 109
  start-page: 7
  year: 1995
  end-page: 13
  article-title: Root architecture and plant productivity
  publication-title: Plant Physiology
– volume: 67
  start-page: 3699
  year: 2016
  end-page: 3708
  article-title: Root hair formation in rice ( L.) differs between root types and is altered in artificial growth conditions
  publication-title: Journal of Experimental Botany
– volume: 4
  start-page: 186
  year: 2013
  article-title: Getting to the roots of it: Genetic and hormonal control of root architecture
  publication-title: Frontiers in Plant Science
– volume: 4
  start-page: 355
  year: 2013
  article-title: Integration of root phenes for soil resource acquisition
  publication-title: Frontiers in Plant Science
– year: 2021
  article-title: rMVP: A memory‐efficient , visualization‐enhanced, and parallel‐accelerated tool for genome‐wide association study
  publication-title: Genomics, Proteomics & Bioinformatics
– volume: 42
  start-page: 355
  year: 2010
  end-page: 360
  article-title: Mixed linear model approach adapted for genome‐wide association studies
  publication-title: Nature Genetics
– volume: 166
  start-page: 229
  year: 2009
  end-page: 237
  article-title: Mapping of quantitative trait loci for seminal root morphology and gravitropic response in rice
  publication-title: Euphytica
– volume: 13
  year: 2020a
  article-title: Genetic control of root anatomical plasticity in maize
  publication-title: The Plant Genome
– volume: 2
  start-page: 683
  year: 2010
  end-page: 693
  article-title: Gene networks for nitrogen sensing, signaling, and response in .
  publication-title: Systems Biology and Medicine
– volume: 223
  start-page: 548
  year: 2019
  end-page: 564
  article-title: Root phenotypes for improved nutrient capture: An underexploited opportunity for global agriculture
  publication-title: New Phytologist
– volume: 6
  start-page: 262
  year: 2001
  end-page: 267
  article-title: Abiotic stress signalling pathways: Specificity and cross‐talk
  publication-title: Trends in Plant Science
– volume: 122
  start-page: 1
  year: 2011
  end-page: 13
  article-title: Root biology and genetic improvement for drought avoidance in rice
  publication-title: Field Crops Research
– volume: 8
  start-page: 553
  year: 2005
  end-page: 562
  article-title: Development and distribution of root systems in two grain sorghum cultivars originated from Sudan under drought stress
  publication-title: Plant Production Science
– volume: 140
  start-page: 18
  year: 2013
  end-page: 31
  article-title: Maize root growth angles become steeper under low N conditions
  publication-title: Field Crops Research
– volume: 21
  start-page: 2341
  year: 2009
  end-page: 2356
  article-title: Ca2+ regulates reactive oxygen species production and pH during mechanosensing in arabidopsis roots
  publication-title: Plant Cell
– volume: 120
  start-page: 205
  year: 2011
  end-page: 214
  article-title: Variation in root system architecture and drought response in rice ( ): Phenotyping of the OryzaSNP panel in rainfed lowland fields
  publication-title: Field Crops Research
– volume: 108
  start-page: 407
  year: 2011
  end-page: 418
  article-title: Breeding crop plants with deep roots: Their role in sustainable carbon, nutrient and water sequestration
  publication-title: Annals of Botany
– volume: 282
  start-page: 11
  year: 2019
  end-page: 13
  article-title: Demystifying roots: A need for clarification and extended concepts in root phenotyping
  publication-title: Plant Science
– volume: 17
  start-page: 1
  year: 2018
  article-title: Ectopic expression of AtCIPK23 enhances drought tolerance via accumulating less H O in transgenic tobacco plants
  publication-title: Genetics and Molecular Research
– volume: 57
  start-page: 1431
  year: 2017
  end-page: 1446
  article-title: Grain yield and nitrogen accumulation in maize hybrids released during 1934 to 2013 in the US Midwest
  publication-title: Crop Science
– volume: 166
  start-page: 470
  year: 2014
  end-page: 486
  article-title: Image‐based high‐throughput field phenotyping of crop roots
  publication-title: Plant Physiology
– volume: 23
  start-page: 2633
  year: 2007
  end-page: 2635
  article-title: TASSEL: Software for association mapping of complex traits in diverse samples
  publication-title: Bioinformatics
– volume: 156
  start-page: 1041
  year: 2011
  end-page: 1049
  article-title: Root phenes for enhanced soil exploration and phosphorus acquisition: Tools for future crops
  publication-title: Plant Physiology
– volume: 232
  start-page: 69
  year: 2001
  end-page: 79
  article-title: Effect of phosphorus availability on basal root shallowness in common bean
  publication-title: Plant and Soil
– volume: 8
  start-page: 116
  year: 2007
  article-title: Sequence‐indexed mutations in maize using the UniformMu transposon‐tagging population
  publication-title: BMC Genomics
– volume: 316
  start-page: 285
  year: 2008
  end-page: 297
  article-title: Measuring root traits in barley ( ssp. and ssp. ) seedlings using gel chambers, soil sacs and X‐ray microtomography
  publication-title: Plant and Soil
– volume: 44
  start-page: 52
  year: 2005
  end-page: 61
  article-title: Steady‐state transposon mutagenesis in inbred maize
  publication-title: The Plant Journal
– volume: 122
  start-page: 485
  year: 2018
  end-page: 499
  article-title: Co‐optimisation of axial root phenotypes for nitrogen and phosphorus acquisition in common bean
  publication-title: Annals Botany
– volume: 32
  start-page: 749
  year: 2005
  end-page: 762
  article-title: Topsoil foraging and phosphorus acquisition efficiency in maize ( )
  publication-title: Functional Plant Biology
– volume: 182
  year: 2019
  article-title: Shared genetic control of root system architecture between and
  publication-title: Plant Physiology
– volume: 138
  start-page: 1184
  year: 2009
  end-page: 1194
  article-title: CHL1 functions as a nitrate sensor in plants
  publication-title: Cell
– volume: 38
  start-page: 77
  year: 2011
  end-page: 87
  article-title: Identification and characterization of putative CIPK genes in maize
  publication-title: Journal of Genetics and Genomics
– ident: e_1_2_8_27_1
  doi: 10.1016/j.fcr.2010.10.003
– ident: e_1_2_8_48_1
  doi: 10.4238/gmr16039864
– ident: e_1_2_8_96_1
  doi: 10.1038/ng.546
– ident: e_1_2_8_12_1
  doi: 10.1186/s13007-015-0093-3
– ident: e_1_2_8_75_1
  doi: 10.1002/tpg2.20003
– ident: e_1_2_8_57_1
  doi: 10.1093/jxb/eru508
– volume-title: R: A language and environment for statistical computing
  year: 2018
  ident: e_1_2_8_73_1
– volume: 9
  start-page: 314
  year: 2015
  ident: e_1_2_8_81_1
  article-title: An expanded maize gene expression atlas based on RNA‐sequencing and its use to explore root development
  publication-title: The Plant Genome
– ident: e_1_2_8_34_1
  doi: 10.1038/nature22971
– ident: e_1_2_8_13_1
  doi: 10.1093/aob/mcw112
– ident: e_1_2_8_23_1
  doi: 10.2135/cropsci2008.03.0152
– ident: e_1_2_8_32_1
  doi: 10.1111/j.1365-313X.2008.03685.x
– ident: e_1_2_8_56_1
  doi: 10.1104/pp.111.175414
– ident: e_1_2_8_49_1
  doi: 10.1016/j.tplants.2008.10.005
– ident: e_1_2_8_11_1
  doi: 10.1007/s11104-015-2379-7
– ident: e_1_2_8_91_1
  doi: 10.1093/jxb/erz293
– ident: e_1_2_8_40_1
  doi: 10.1093/bioinformatics/btz308
– ident: e_1_2_8_78_1
  doi: 10.1186/1471-2164-8-116
– ident: e_1_2_8_95_1
  doi: 10.3389/fpls.2013.00355
– ident: e_1_2_8_46_1
  doi: 10.1371/journal.pgen.1005767
– ident: e_1_2_8_74_1
  doi: 10.1093/aob/mcy092
– ident: e_1_2_8_16_1
  doi: 10.1007/978-1-4612-2694-9_4
– ident: e_1_2_8_44_1
  doi: 10.1023/A:1010381919003
– ident: e_1_2_8_36_1
  doi: 10.3389/fpls.2013.00186
– volume: 9
  start-page: 1
  year: 2018
  ident: e_1_2_8_19_1
  article-title: Rice auxin influx carrier OsAUX1 facilitates root hair elongation in response to low external phosphate
  publication-title: Nature Communications
– ident: e_1_2_8_77_1
  doi: 10.1007/BF02983986
– ident: e_1_2_8_5_1
  doi: 10.1016/j.fcr.2011.01.001
– ident: e_1_2_8_29_1
  doi: 10.1016/j.cell.2009.07.004
– volume: 134
  start-page: 43
  year: 2014
  ident: e_1_2_8_42_1
  article-title: Calcium sensors and their interacting protein kinases: Genomics of the arabidopsis and rice CBL‐CIPK signaling networks
  publication-title: Genome Analysis
– ident: e_1_2_8_84_1
  doi: 10.1016/j.fcr.2012.09.010
– ident: e_1_2_8_70_1
  doi: 10.1016/0098-8472(93)90062-K
– ident: e_1_2_8_10_1
  doi: 10.1016/j.jcg.2011.01.005
– ident: e_1_2_8_41_1
  doi: 10.1016/S1360-1385(01)01946-X
– ident: e_1_2_8_89_1
  doi: 10.1093/jxb/ers111
– ident: e_1_2_8_59_1
  doi: 10.1071/FP06055
– ident: e_1_2_8_72_1
  doi: 10.1111/nph.14641
– ident: e_1_2_8_92_1
  doi: 10.1016/j.gpb.2020.10.007
– ident: e_1_2_8_9_1
  doi: 10.1016/j.fcr.2004.07.003
– ident: e_1_2_8_52_1
  doi: 10.1104/pp.109.1.7
– ident: e_1_2_8_79_1
– ident: e_1_2_8_31_1
  doi: 10.1139/b86-335
– ident: e_1_2_8_28_1
  doi: 10.1093/jxb/erm097
– ident: e_1_2_8_30_1
  doi: 10.1093/aob/mch056
– ident: e_1_2_8_94_1
  doi: 10.1093/jxb/erv241
– ident: e_1_2_8_6_1
  doi: 10.1111/j.1469-8137.1996.tb01847.x
– ident: e_1_2_8_51_1
  doi: 10.1023/A:1013324727040
– ident: e_1_2_8_8_1
  doi: 10.1104/pp.114.243519
– ident: e_1_2_8_98_1
  doi: 10.1071/FP05005
– ident: e_1_2_8_24_1
  doi: 10.2135/cropsci2010.03.0178
– ident: e_1_2_8_88_1
  doi: 10.1002/wsbm.87
– ident: e_1_2_8_15_1
  doi: 10.2135/cropsci2016.08.0704
– ident: e_1_2_8_3_1
  doi: 10.1073/pnas.88.8.3502
– ident: e_1_2_8_54_1
  doi: 10.1093/jxb/ery048
– volume: 182
  year: 2019
  ident: e_1_2_8_97_1
  article-title: Shared genetic control of root system architecture between Zea mays and Sorghum bicolor
  publication-title: Plant Physiology
– ident: e_1_2_8_61_1
  doi: 10.1186/s12870-019-1653-x
– ident: e_1_2_8_58_1
  doi: 10.1007/s00122-011-1690-9
– ident: e_1_2_8_26_1
  doi: 10.1016/S1360-1385(01)02023-4
– ident: e_1_2_8_4_1
– volume: 3
  start-page: 307
  year: 2012
  ident: e_1_2_8_71_1
  article-title: Inferring quantitative trait pathways associated with bull fertility from a genome‐wide association study
  publication-title: Frontiers in Genetics
– ident: e_1_2_8_7_1
  doi: 10.1093/bioinformatics/btm308
– ident: e_1_2_8_60_1
  doi: 10.1007/s11104-007-9492-1
– ident: e_1_2_8_62_1
  doi: 10.1111/j.1365-313X.2005.02509.x
– ident: e_1_2_8_2_1
  doi: 10.1038/srep05563
– ident: e_1_2_8_22_1
  doi: 10.1051/agro:19980305
– ident: e_1_2_8_86_1
  doi: 10.1093/jxb/erq429
– ident: e_1_2_8_80_1
  doi: 10.1007/s11104-010-0343-0
– ident: e_1_2_8_47_1
  doi: 10.1016/j.plantsci.2018.09.015
– ident: e_1_2_8_85_1
  doi: 10.1023/A:1026146615248
– ident: e_1_2_8_21_1
  doi: 10.1016/j.fcr.2011.03.001
– ident: e_1_2_8_93_1
  doi: 10.1093/jxb/erv074
– ident: e_1_2_8_33_1
  doi: 10.1038/s41467-018-05636-0
– ident: e_1_2_8_37_1
  doi: 10.1016/j.ceca.2014.05.003
– ident: e_1_2_8_68_1
  doi: 10.3117/plantroot.1.57
– ident: e_1_2_8_69_1
  doi: 10.1007/BF00008076
– ident: e_1_2_8_45_1
  doi: 10.1071/FP03255
– ident: e_1_2_8_18_1
  doi: 10.1093/genetics/154.1.437
– ident: e_1_2_8_43_1
  doi: 10.1104/pp.104.059196
– ident: e_1_2_8_63_1
  doi: 10.1104/pp.15.00145
– ident: e_1_2_8_64_1
  doi: 10.1105/tpc.109.068395
– ident: e_1_2_8_17_1
  doi: 10.1093/jxb/erp265
– ident: e_1_2_8_90_1
  doi: 10.1626/pps.8.553
– ident: e_1_2_8_76_1
  doi: 10.1093/jxb/eraa084
– ident: e_1_2_8_25_1
  doi: 10.1007/s11104-008-9780-4
– ident: e_1_2_8_65_1
  doi: 10.1626/jcs.60.543
– ident: e_1_2_8_38_1
  doi: 10.1007/s11104-006-9008-4
– ident: e_1_2_8_82_1
  doi: 10.1105/tpc.16.00806
– ident: e_1_2_8_14_1
  doi: 10.1016/j.tplants.2007.08.012
– ident: e_1_2_8_55_1
  doi: 10.1098/rstb.2011.0243
– ident: e_1_2_8_50_1
  doi: 10.1111/nph.15738
– ident: e_1_2_8_67_1
  doi: 10.1007/s10681-008-9833-z
– ident: e_1_2_8_20_1
  doi: 10.1093/jxb/eri303
– ident: e_1_2_8_66_1
  doi: 10.1093/jxb/erw115
– ident: e_1_2_8_83_1
  doi: 10.1007/s11104-010-0623-8
– ident: e_1_2_8_35_1
  doi: 10.1360/04wc0142
– ident: e_1_2_8_39_1
  doi: 10.1093/aob/mcr175
– ident: e_1_2_8_53_1
  doi: 10.1093/aob/mcs293
– ident: e_1_2_8_87_1
  doi: 10.1038/ng.2725
SSID ssj0001479
Score 2.5673935
Snippet Crops with reduced nutrient and water requirements are urgently needed in global agriculture. Root growth angle plays an important role in nutrient and water...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 837
SubjectTerms Biomass
Calcineurin
Calcineurin - genetics
Calcineurin - metabolism
Cbl protein
computer simulation
Corn
crown root
environment
Gene mapping
genes
Genome-Wide Association Study
Genomes
Genotypes
GWAS
Kinases
mutants
New varieties
Nitrogen
Nitrogen - metabolism
Nucleotides
Nutrient requirements
phenotype
Phenotyping
phytomass
Plant biomass
Plant growth
Plant Roots - metabolism
Protein kinase
Protein Kinases - metabolism
Proteins
reverse genetics
root architecture
root growth
Serine - genetics
Serine - metabolism
Single-nucleotide polymorphism
Threonine
Threonine - metabolism
Water - metabolism
Water requirements
Zea mays - metabolism
Title Root angle in maize influences nitrogen capture and is regulated by calcineurin B‐like protein (CBL)‐interacting serine/threonine‐protein kinase 15 (ZmCIPK15)
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fpce.14135
https://www.ncbi.nlm.nih.gov/pubmed/34169548
https://www.proquest.com/docview/2633228303
https://www.proquest.com/docview/2545594946
https://www.proquest.com/docview/2661040060
Volume 45
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKBRIXHuW1UCqDOGwPaZPYSdbixK5aladWFZUqhBQ5flTRbpPVJnvYnvgJ_Ah-Gb-EGecB5SXELbInkp3MeD7bM98Q8syCU9SJ0J7lKoQNip95EmCpp2wsJM98aVw5n7fv4qMT_uo0Ot0gz7tcmIYfoj9wQ8tw6zUauMyqH4x8oQyYecAwwRxjtRAQHX-njgp4w7OH4YtJIoKWVQijePo3L_uiXwDmZbzqHM7hTfKxG2oTZzLbW9XZnrr4icXxP-dyi9xogSh90WjObbJhii1yrSlNud4iV8clwMb1HfLluCxrKouzuaF5Qc9lfoEPbWmTisKSsCxBC6mSC7yNAFFN84oumyL3RtNsDX1zvMDHk306_vrp8zyfGeooIqBhOBm_2YVGZK5wOVvFGa1cVuJ-DZqG58UGujvxWV6A56VBRIcfzicvp6-DaPcuOTk8eD858trSDp7iADI864tES-kzzUZaCKWM9kdaS6Zgw6aySGbMCon8iCZILEAaa7XV3IaBMSzyFbtHNouyMA8ItQAyEpuArzeW-0ZKqyMGTjdQwSiLrBiQYfeTU9XynmP5jXna7X_g66fu6w_I01500ZB9_E5ou9OUtLX3Kg1jxhyXGhuQJ303WCpev8jClCuQAbAaCS54_BcZgEu4rMb-gNxvtLAfCeCNGOn5YEJOl_48xHQ6OXAPD_9d9BG5HmJmhwuv2yab9XJlHgPeqrMdciXk0x1nXt8AI_UrDA
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtNAFL0qBQQbHuUVKDAgkNKFi-3xI16wIGmrhKRVVbVS1Y0ZzyOKktpRnAilKz6Bj2DJr_ATfAl3xg8oL7Hpgp3lubLGM3Pmnpm5cy7AC4VOUYSRsJTHXVyg2InFkJZaXAUR8xKbSZPOZ3cv6B55b4_94xX4XN2FKfQh6g03jQwzX2uA6w3pH1A-5RJx7tAqpLIvl-9xwZa_7m1h77503Z3tw07XKnMKWNxD72YpOwoFYzYVtCWiiHMp7JYQjHJcKfDEZwlVEdPCfNIJFfpSpYQSnnIdKalvc4rfvQSXdQZxrdS_dfBdrMrxCmU_HTAZhpFT6hjpuKG6que93y-U9jxDNi5u5yZ8qRqniGwZby7mySY_-0k38n9pvVtwo-Ta5E0BjtuwItM1uFpk31yuwZV2hsx4eQc-HWTZnLB0OJFklJJTNjrTD2X2lpzgrDfLEGiEs6k-cEFTQUY5mcmhTn4mBUmWWDbRMQr68IK0v374OBmNJTEqGPii2WkPNvClFucw19LSIcnNxctXcwST3hKXWFyZj0cpkgvi-KR5ctrp7fcdf-MuHF1IW92D1TRL5QMgCnlUqEKkM1J5tmRMCZ8ir3C400p8FTWgWY2qmJfS7jrDyCSulnjY27Hp7QY8r02nhZ7J74zWq6EZl1NaHrsBpUYujjbgWV2Mk5E-YWKpzBZog3zcj7zIC_5ig4xQe47AbsD9YtjXNUFKFWgFQvwhM3j_XMV4v7NtHh7-u-lTuNY93B3Eg95e_xFcd_VFFhNNuA6r89lCPkZ6OU-eGFQTeHfRQPgGFuOLUA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LbtNAFL0qBSo2CAqUQIEBgZQuLGzP2M4sWJC0UUNKFSEqVWzMeB6V1dSOklQorPgEPoIdf8WXcGf8EBUPsenO8lxZY93XmZk75wI8N5gUVcKVZ5gMcYHiZ55AWOpJE3PBMl9o187n7WG8f8TeHEfHa_C9uQtT8UO0G27WM1y8tg4-U-YXJ59JjW4e0KaicqxXn3C9tng12kXlvgjD4d77wb5XtxTwJMPk5hmfJ0oInyraU5xLqZXfU0pQiQsFmUUio4YLy8ung8RgKjVGGcVMGGhNI19S_O4VuGoPF239WMgmbdgPWEXsZ-slk4QHNY2RLRtqp3ox-f2GaC8CZJfhhrfgZg1NyevKlm7Dmi424XrVrHK1Cdf6JQLJ1R349q4sl0QUJ1NN8oKcifyzfaibnSwIBol5iXZJpJjZ8wkUVSRfkHnV9l4rkq1wbGqP9O1eP-n_-PJ1mp9q4kgj8EV30D_YwZeWy8Ld4ipOyMLdU3y5RNuzO8gahxvx07zAXEyCiHQ_nA1Gk3EQ7dyFo0vRzD1YL8pC3wdiEHYkJsHsrw3ztRBGRRTTcCCDXhYZ3oFuo4VU1kzotiHHNG1WRKiw1CmsA89a0VlF__Enoe1GlWkdARZpGFPq2NVoB562w-i79kBGFLo8RxmErxFnnMX_kEEAZQNt7HdgqzKTdiaIQGJL2Ic_5Ozm71NMJ4M99_Dg_0WfwMZkd5gejA7HD-FGaK99uNq7bVhfzs_1IwRjy-yxcwICHy_b634CpqJIxA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Root+angle+in+maize+influences+nitrogen+capture+and+is+regulated+by+calcineurin+B%E2%80%90like+protein+%28CBL%29%E2%80%90interacting+serine%2Fthreonine%E2%80%90protein+kinase+15+%28ZmCIPK15%29&rft.jtitle=Plant%2C+cell+and+environment&rft.au=Schneider%2C+Hannah+M.&rft.au=Lor%2C+Vai+Sa+Nee&rft.au=Hanlon%2C+Meredith+T.&rft.au=Perkins%2C+Alden&rft.date=2022-03-01&rft.issn=0140-7791&rft.eissn=1365-3040&rft.volume=45&rft.issue=3&rft.spage=837&rft.epage=853&rft_id=info:doi/10.1111%2Fpce.14135&rft.externalDBID=10.1111%252Fpce.14135&rft.externalDocID=PCE14135
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0140-7791&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0140-7791&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0140-7791&client=summon