Intravenous Injection of Apolipoprotein A-V Reconstituted High-Density Lipoprotein Decreases Hypertriglyceridemia in apoav−/− Mice and Requires Glycosylphosphatidylinositol-Anchored High-Density Lipoprotein–Binding Protein 1
OBJECTIVE—Apolipoprotein A-V (apoA-V), a minor protein associated with lipoproteins, has a major effect on triacylglycerol (TG) metabolism. We investigated whether apoA-V complexed with phospholipid in the form of a reconstituted high-density lipoprotein (rHDL) has potential utility as a therapeutic...
Saved in:
Published in | Arteriosclerosis, thrombosis, and vascular biology Vol. 30; no. 12; pp. 2504 - 2509 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Philadelphia, PA
American Heart Association, Inc
01.12.2010
Lippincott Williams & Wilkins |
Subjects | |
Online Access | Get full text |
ISSN | 1079-5642 1524-4636 1524-4636 |
DOI | 10.1161/ATVBAHA.110.210815 |
Cover
Loading…
Summary: | OBJECTIVE—Apolipoprotein A-V (apoA-V), a minor protein associated with lipoproteins, has a major effect on triacylglycerol (TG) metabolism. We investigated whether apoA-V complexed with phospholipid in the form of a reconstituted high-density lipoprotein (rHDL) has potential utility as a therapeutic agent for treatment of hypertriglyceridemia (HTG) when delivered intravenously.
METHODS AND RESULTS—Intravenous injection studies were performed in genetically engineered mouse models of severe HTG, including apoav−/− and gpihbp1−/− mice. Administration of apoA-V rHDL to hypertriglyceridemic apoav−/− mice resulted in a 60% reduction in plasma TG concentration after 4 hours. This decline can be attributed to enhanced catabolism/clearance of very-low-density lipoprotein (VLDL), where VLDL TG and cholesterol were reduced ≈60%. ApoA-V that associated with VLDL after injection was also rapidly cleared. Site-specific mutations in the heparin-binding region of apoA-V (amino acids 186 to 227) attenuated apoA-V rHDL TG-lowering activity by 50%, suggesting that this sequence element is required for optimal TG-lowering activity in vivo. Unlike apoav−/− mice, injection of apoA-V rHDL into gpihbp1−/− mice had no effect on plasma TG levels, and apoA-V remained associated with plasma VLDL.
CONCLUSION—Intravenously injected apoA-V rHDL significantly lowers plasma TG in an apoA-V deficient mouse model. Its intravenous administration may have therapeutic benefit in human subjects with severe HTG, especially in cases involving apoA-V variants associated with HTG. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1079-5642 1524-4636 1524-4636 |
DOI: | 10.1161/ATVBAHA.110.210815 |