An analytical model for predicting the remaining battery capacity of lithium-ion batteries

Predicting the residual energy of the battery source that powers a portable electronic device is imperative in designing and applying an effective dynamic power management policy for the device. This paper starts up by showing that a 30% error in predicting the battery capacity of a lithium-ion batt...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on very large scale integration (VLSI) systems Vol. 14; no. 5; pp. 441 - 451
Main Authors Peng Rong, Pedram, M.
Format Journal Article
LanguageEnglish
Published Piscataway, NJ IEEE 01.05.2006
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Predicting the residual energy of the battery source that powers a portable electronic device is imperative in designing and applying an effective dynamic power management policy for the device. This paper starts up by showing that a 30% error in predicting the battery capacity of a lithium-ion battery can result in up to 20% performance degradation for a dynamic voltage and frequency scaling algorithm. Next, this paper presents a closed form analytical expression for predicting the remaining capacity of a lithium-ion battery. The proposed high-level model, which relies on online current and voltage measurements, correctly accounts for the temperature and cycle aging effects. The accuracy of the high-level model is validated by comparing it with DUALFOIL simulation results, demonstrating a maximum of 5% error between simulated and predicted data.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1063-8210
1557-9999
DOI:10.1109/TVLSI.2006.876094